首页> 外文会议>2012 International Conference on Computer Communication and Informatics >Prediction of meteorological images based on relaxation labeling and artificial neural network from a given sequence of images
【24h】

Prediction of meteorological images based on relaxation labeling and artificial neural network from a given sequence of images

机译:基于给定图像序列的基于松弛标记和人工神经网络的气象图像预测

获取原文
获取原文并翻译 | 示例

摘要

In this paper an algorithm to predict the spectral signature of the short-term evolution of cloud formations using image sequences acquired from ISRO meteorological satellite (Kalpana-1) is described. The proposed algorithm consists of four steps: first step perform image processing activities (thresholding and relaxation); the second step is dedicated to determination of neural net for each pixel in each and every images. The third and fourth step consists of a novel neural network based training and prediction respectively. The main goal of this work is to maximize the prediction accuracy. Various kind of predictions are made depending upon number of feature vectors and number of net used. Mean Square Error is used to evaluate the performance of the neural net and PSNR is used to judge the accuracy of predicted image. Some experimental results obtained by using real image sequences acquired from ISRO meteorological satellite are shown that are extreamly encouraging.
机译:本文描述了一种算法,该算法使用从ISRO气象卫星(Kalpana-1)获取的图像序列来预测云层短期演化的光谱特征。所提出的算法包括四个步骤:第一步执行图像处理活动(阈值和松弛);第二步专用于确定每个图像中每个像素的神经网络。第三步和第四步分别由一种新颖的基于神经网络的训练和预测组成。这项工作的主要目的是使预测准确性最大化。根据特征向量的数量和所用网络的数量,进行各种预测。均方误差用于评估神经网络的性能,PSNR用于判断预测图像的准确性。通过使用从ISRO气象卫星获取的真实图像序列获得的一些实验结果显示出极大的鼓舞性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号