首页> 外文会议>2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis >Automatic atlas-based three-label cartilage segmentation from MR knee images
【24h】

Automatic atlas-based three-label cartilage segmentation from MR knee images

机译:从MR膝图像自动基于图集的三标签软骨分割

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a method to build a bone-cartilage atlas of the knee and to use it to automatically segment femoral and tibial cartilage from T1 weighted magnetic resonance (MR) images. Anisotropic spatial regularization is incorporated into a three-label segmentation framework to improve segmentation results for the thin cartilage layers. We jointly use the atlas information and the output of a probabilistic k nearest neighbor classifier within the segmentation method. The resulting cartilage segmentation method is fully automatic. Validation results on 18 knee MR images against manual expert segmentations from a dataset acquired for osteoarthritis research show good performance for the segmentation of femoral and tibial cartilage (mean Dice similarity coefficient of 78.2% and 82.6% respectively).
机译:本文提出了一种方法来构建膝盖的骨软骨图集,并使用该方法根据T1加权磁共振(MR)图像自动分割股骨和胫骨软骨。将各向异性空间正则化合并到三标签分割框架中,以改善软骨薄层的分割结果。我们在分割方法中共同使用图集信息和概率k最近邻分类器的输出。最终的软骨分割方法是全自动的。对来自骨关节炎研究的数据集进行的手动专家分割的18膝MR图像的验证结果显示,股骨和胫骨软骨分割具有良好的分割性能(平均Dice相似系数分别为78.2%和82.6%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号