首页> 外文会议>2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis >Automated abdominal fat quantification and food residue removal in CT
【24h】

Automated abdominal fat quantification and food residue removal in CT

机译:自动腹部脂肪定量和CT去除食物残留

获取原文
获取原文并翻译 | 示例

摘要

Quantification of distinct subcutaneous and visceral fat regions in the abdomen is essential in clinical studies of metabolic disorders and cardiovascular disease. Computed Tomography (CT) is a widely adopted imaging technology for abdominal fat quantification because the intensity range of fat in Hounsfield Units (HU) is distinct from other tissues in the pelvis and abdomen. Nevertheless, it has been observed that the quantification of visceral fat based solely on intensity is subject to errors caused by food residues in the intestines that may have intensities similar to fat. Herein we present a method for automated quantification of abdominal fat in CT with emphasis on reducing errors in visceral fat measurements caused by food residues. The fat pixels are first identified in the feature space of HUs and then divided into subcutaneous and visceral component using anatomic location. Food residues within the intestines that are previously inaccurately labeled as visceral fat (false positives) are identified and removed using a machine learning technique. Experimental results include validation against reference data over 144 CT images to test the generalization capability of our scheme.
机译:在代谢异常和心血管疾病的临床研究中,对腹部不同的皮下和内脏脂肪区域进行定量分析至关重要。计算机断层扫描(CT)是一种广泛用于腹部脂肪定量的成像技术,因为Hounsfield单位(HU)中脂肪的强度范围不同于骨盆和腹部的其他组织。然而,已经观察到仅基于强度来量化内脏脂肪会受到由肠中食物残渣引起的误差的影响,这些残渣可能具有与脂肪类似的强度。在这里,我们提出一种自动量化CT中腹部脂肪的方法,重点是减少食物残渣引起的内脏脂肪测量误差。首先在HUs的特征空间中识别出脂肪像素,然后使用解剖位置将其分为皮下和内脏成分。使用机器学习技术识别并清除先前不正确地标记为内脏脂肪的肠内食物残渣(假阳性)。实验结果包括针对144张CT图像上的参考数据进行验证,以测试我们方案的泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号