首页> 外文会议>2012 IEEE Workshop on Applications of Computer Vision >Image congealing via efficient feature selection
【24h】

Image congealing via efficient feature selection

机译:通过有效的特征选择进行图像凝结

获取原文
获取原文并翻译 | 示例

摘要

Congealing for an image ensemble is a joint alignment process to rectify images in the spatial domain such that the aligned images are as similar to each other as possible. Fruitful congealing algorithms were applied to various object classes and medical applications. However, relatively little effort has been taken in the direction of compact and effective feature representations for each image. To remedy this problem, the least-square-based congealing framework is extended by incorporating an unsupervised feature selection algorithm, which substantially removes feature redundancy and leads to a more efficient congealing with even higher accuracy. Furthermore, our novel feature selection algorithm itself is an independent contribution. It is not explicitly linked to the congealing algorithm and can be directly applied to other learning tasks. Extensive experiments are conducted for both the feature selection and congealing algorithms.
机译:凝结图像集合是一种联合对齐过程,用于在空间域中对图像进行校正,以使对齐后的图像彼此尽可能相似。卓有成效的凝结算法已应用于各种对象类别和医疗应用。然而,在每个图像的紧凑和有效特征表示的方向上已经进行了相对较少的努力。为了解决此问题,通过结合无监督的特征选择算法扩展了基于最小二乘的凝结框架,该算法实质上消除了特征冗余并导致更高效的凝结,甚至更高的精度。此外,我们新颖的特征选择算法本身是一个独立的贡献。它没有明确链接到凝聚算法,可以直接应用于其他学习任务。针对特征选择和凝结算法都进行了广泛的实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号