首页> 外文会议>2012 IEEE Sixth International Conference on Semantic Computing. >Utilizing Semantic Composition in Distributional Semantic Models for Word Sense Discrimination and Word Sense Disambiguation
【24h】

Utilizing Semantic Composition in Distributional Semantic Models for Word Sense Discrimination and Word Sense Disambiguation

机译:在分布语义模型中利用语义组合进行词义辨别和词义消歧

获取原文
获取原文并翻译 | 示例

摘要

Semantic composition in distributional semantic models (DSMs) offers a powerful tool to represent word meaning in context. In this paper, we investigate methods to utilize compositional DSMs to improve word sense discrimination and word sense disambiguation. In this work, we rely on a previously proposed multiplicative model of composition. We explore methods to extend this model to exploit richer contexts. For word sense discrimination, we build context vectors, which are clustered, from the word representations based on the extended compositional model. For word sense disambiguation, we augment lexical features with their word representations based on the same extended compositional model. For both tasks, we achieve substantial improvement.
机译:分布语义模型(DSM)中的语义组合提供了一种强大的工具来表示上下文中的单词含义。在本文中,我们研究了利用成分DSM来改善词义辨别和词义消歧的方法。在这项工作中,我们依赖于先前提出的构成乘法模型。我们探索了扩展此模型以利用更丰富上下文的方法。对于词义辨别,我们基于扩展的组成模型从词表示构建聚类的上下文向量。为了消除词义歧义,我们基于相同的扩展构图模型,通过其词表示来增强词汇特征。对于这两个任务,我们都取得了很大的进步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号