首页> 外文会议>2012 IEEE Silicon Nanoelectronics Workshop >Graphene for More Moore and More Than Moore applications
【24h】

Graphene for More Moore and More Than Moore applications

机译:石墨烯可用于更多摩尔和更多摩尔的应用

获取原文
获取原文并翻译 | 示例

摘要

Graphene has caught the attention of the electronic device community as a potential future option for More Moore and More Than Moore devices and applications. This is owed to its remarkable material properties, which include ballistic conductance over several hundred nanometers or charge carrier mobilities of several 100.000 cm2/Vs in pristine graphene. Furthermore, standard CMOS technology may be applied to graphene in order to make devices. Integrated graphene devices, however, are performance limited by scattering due to defects in the graphene and its dielectric environment [1, 2] and high contact resistance [3, 4]. In addition, graphene has no energy band gap (Figure 1) and hence graphene MOSFETs (GFETs) cannot be switched off, but instead show ambipolar behaviour [5]. This has steered interest away from logic to analog radio frequency (RF) applications [6, 7]. This talk will systematically compare the expected RF performance of realistic GFETs with current silicon CMOS technology [8]. GFETs slightly lag behind in maximum cut-off frequency FT,max (Figure 2) up to a carrier mobility of 3000 cm2/Vs, where they can achieve similar RF performance as 65nm silicon FETs. While a strongly nonlinear voltage-dependent gate capacitance inherently limits performance, other parasitics such as contact resistance are expected to be optimized as GFET process technology improves.
机译:石墨烯作为“更多摩尔”和“超过摩尔”设备和应用的潜在未来选择已引起电子设备社区的关注。这归因于其卓越的材料性能,包括在数百纳米中的弹道电导或在原始石墨烯中的载流子迁移率达100.000 cm 2 / Vs。此外,可以将标准CMOS技术应用于石墨烯以制造器件。然而,由于石墨烯及其介电环境[1、2]中的缺陷和高接触电阻[3、4],由于散射而限制了集成石墨烯器件的性能。此外,石墨烯没有能带隙(图1),因此石墨烯MOSFET(GFET)无法关断,而是表现出双极性行为[5]。这将人们的兴趣从逻辑转向了模拟射频(RF)应用[6,7]。本演讲将系统地比较采用当前硅CMOS技术的实际GFET的预期RF性能[8]。 GFET的最大截止频率FT,max(图2)稍有滞后,高达3000 cm 2 / Vs的载流子迁移率,在这里它们可以实现与65nm硅FET相似的RF性能。虽然强烈依赖于电压的非线性电容会固有地限制性能,但随着GFET工艺技术的改进,有望优化其他寄生效应,例如接触电阻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号