首页> 外文会议>2012 IEEE Silicon Nanoelectronics Workshop >Transport in graphene on boron nitride
【24h】

Transport in graphene on boron nitride

机译:石墨烯在氮化硼上的传输

获取原文
获取原文并翻译 | 示例

摘要

Graphene has become of great interest in recent years for its unique band structure and prospective importance in both microwave and logic devices. Recently, the use of a boron nitride layer between the graphene and the silicon dioxide substrate has shown enhanced mobilities due to displacing the disorder charge, typical on the oxide, further from the graphene material.1,2 On the other hand, like the oxide, boron nitride has polar optical modes which can interact with the carriers in graphene to lower their mobility. We have used an ensemble Monte Carlo (EMC technique to study the transport in graphene on a boron nitride layer. Scattering by the intrinsic phonons of graphene,3 as well as by the flexural modes of the rippled layer, and the remote polar mode of boron nitride has been included. The flexural modes are described by the model of Castro et al.4 While the EMC uses the simple Dirac band structure, coupling constants for the intrinsic phonon modes are taken by fitting to scattering rates determined from firstJprinciples calculations.5 We find that, at low temperatures, the mobility is dominated primarily by the intrinsic graphene phonons and the flexural modes. This arises as the interfacial polar mode of boron nitride lies at an energy of 200 meV, which is largely too high to interact well with the majority of the carriers in graphene. On the other hand, at room temperature, the mobility begins to be dominated by the remote polar mode of the boron nitride. Nevertheless, the prospects of reaching a high velocity, needed for device performance particularly at microwave frequencies, remains very good.
机译:近年来,石墨烯因其独特的能带结构以及在微波和逻辑器件中的潜在重要性而引起了极大的兴趣。近年来,由于石墨烯材料上的无序电荷(通常来自氧化物)更远离石墨烯材料,因此在石墨烯和二氧化硅衬底之间使用氮化硼层已显示出更高的迁移率。 1,2 另一方面,氮化硼与氧化物一样,具有极性光学模式,可以与石墨烯中的载体相互作用,从而降低其迁移率。我们使用了集成蒙特卡罗(EMC)技术研究石墨烯在氮化硼层上的传输。石墨烯的固有声子 3 以及波纹层的弯曲模态对它们的散射, Castro等人的模型描述了弯曲模式。 4 当EMC使用简单的Dirac能带结构时,固有声子模式的耦合常数 5 我们发现,在低温下,迁移率主要受本征石墨烯声子和挠曲模式的支配,这是界面极性模式产生的。氮化硼的能量为200 meV,该能量太高而无法与石墨烯中的大多数载流子良好地相互作用;另一方面,在室温下,迁移率开始受硅的远程极性模式支配。氮化硼然而,设备性能,尤其是微波频率下所需的达到高速的前景仍然非常好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号