首页> 外文会议>2012 IEEE International Workshop on Machine Learning for Signal Processing. >Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution
【24h】

Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution

机译:使用多元Student-t分布的非线性系统的递归离群值鲁棒滤波和平滑

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear Kalman filter and Rauch-Tung-Striebel smoother type recursive estimators for nonlinear discrete-time state space models with multivariate Student's t-distributed measurement noise are presented. The methods approximate the posterior state at each time step using the variational Bayes method. The nonlinearities in the dynamic and measurement models are handled using the nonlinear Gaussian filtering and smoothing approach, which encompasses many known nonlinear Kalman-type filters. The method is compared to alternative methods in a computer simulation.
机译:提出了非线性的离散时间状态空间模型的非线性卡尔曼滤波器和Rauch-Tung-Striebel平滑型递推估计器,该模型具有多变量Student t分布的测量噪声。该方法使用变分贝叶斯方法在每个时间步长近似后状态。动态模型和测量模型中的非线性是使用非线性高斯滤波和平滑方法处理的,该方法包括许多已知的非线性卡尔曼型滤波器。在计算机仿真中将该方法与替代方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号