首页> 外文会议>2012 IEEE 26th International Parallel and Distributed Processing Symposium >Identifying Opportunities for Byte-Addressable Non-Volatile Memory in Extreme-Scale Scientific Applications
【24h】

Identifying Opportunities for Byte-Addressable Non-Volatile Memory in Extreme-Scale Scientific Applications

机译:在极端规模的科学应用中确定字节可寻址非易失性存储器的机会

获取原文
获取原文并翻译 | 示例

摘要

Future exascale systems face extreme power challenges. To improve power efficiency of future HPC systems, non-volatile memory (NVRAM) technologies are being investigated as potential alternatives to existing memories technologies. NVRAMs use extremely low power when in standby mode, and have other performance and scaling benefits. Although previous work has explored the integration of NVRAM into various architecture and system levels, an open question remains: do specific memory workload characteristics of scientific applications map well onto NVRAMs' features when used in a hybrid NVRAM-DRAM memory system? Furthermore, are there common classes of data structures used by scientific applications that should be frequently placed into NVRAM?In this paper, we analyze several mission-critical scientific applications in order to answer these questions. Specifically, we develop a binary instrumentation tool to statistically report memory access patterns in stack, heap, and global data. We carry out hardware simulation to study the impact of NVRAM for both memory power and system performance. Our study identifies many opportunities for using NVRAM for scientific applications. In two of our applications, 31% and 27% of the memory working sets are suitable for NVRAM. Our simulations suggest at least 27% possible power savings and reveal that the performance of some applications is insensitive to relatively long NVRAM write-access latencies.
机译:未来的亿亿次系统将面临极端的功率挑战。为了提高未来HPC系统的电源效率,正在对非易失性存储器(NVRAM)技术进行研究,以替代现有存储器技术。在待机模式下,NVRAM的功耗极低,并具有其他性能和扩展优势。尽管先前的工作已经探讨了将NVRAM集成到各种体系结构和系统级别中的问题,但仍然存在一个悬而未决的问题:科学应用程序的特定内存工作负载特征在混合NVRAM-DRAM内存系统中使用时是否能很好地映射到NVRAM的功能上?此外,是否有应经常用于NVRAM的科学应用程序使用的通用数据结构类别?在本文中,我们分析了几种关键任务科学应用程序,以回答这些问题。具体来说,我们开发了一种二进制工具来统计地报告堆栈,堆和全局数据中的内存访问模式。我们进行了硬件仿真,以研究NVRAM对存储器功率和系统性能的影响。我们的研究发现了将NVRAM用于科学应用的许多机会。在我们的两个应用程序中,分别有31%和27%的内存工作集适用于NVRAM。我们的仿真表明,至少可以节省27%的功率,并且表明某些应用程序的性能对相对较长的NVRAM写访问延迟不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号