首页> 外文会议>2011 IEEE Workshop on Automatic Speech Recognition amp; Understanding >Subword-based automatic lexicon learning for Speech Recognition
【24h】

Subword-based automatic lexicon learning for Speech Recognition

机译:基于子词的语音识别自动词典学习

获取原文
获取原文并翻译 | 示例

摘要

We present a framework for learning a pronunciation lexicon for an Automatic Speech Recognition (ASR) system from multiple utterances of the same training words, where the lexical identities of the words are unknown. Instead of only trying to learn pronunciations for known words we go one step further and try to learn both spelling and pronunciation in a joint optimization. Decoding based on linguistically motivated hybrid subword units generates the joint lexical search space, which is reduced to the most appropriate lexical entries based on a set of simple pruning techniques. A cascade of letter and acoustic pruning, followed by re-scoring N-best hypotheses with discriminative decoder statistics resulted in optimal lexical entries in terms of both spelling and pronunciation. Evaluating the framework on English isolated word recognition, we achieve reductions of 7.7% absolute on word error rate and 20.9% absolute on character error rate over baselines that use no pruning.
机译:我们提出了一个框架,用于从相同训练词的多种发音中学习自动语音识别(ASR)系统的发音词典,其中单词的词法身份是未知的。不仅要尝试学习已知单词的发音,我们还要进一步,并尝试通过联合优化来学习拼写和发音。基于语言动机的混合子词单元的解码会生成联合词法搜索空间,基于一组简单的修剪技术,该联合词法搜索空间将减少为最合适的词法条目。字母和声音修剪的级联,然后使用判别式解码器统计信息对N最佳假设进行重新评分,从而在拼写和发音方面都产生了最佳词汇条目。通过评估英语隔离单词识别的框架,与不修剪的基线相比,我们的单词错误率绝对值降低了7.7%,字符错误率绝对值降低了20.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号