首页> 外文会议>2011 IEEE Workshop on Automatic Speech Recognition amp; Understanding >Subword-based multi-span pronunciation adaptation for recognizing accented speech
【24h】

Subword-based multi-span pronunciation adaptation for recognizing accented speech

机译:基于子词的多跨度语音自适应以识别重音

获取原文
获取原文并翻译 | 示例

摘要

We investigate automatic pronunciation adaptation for non-native accented speech by using statistical models trained on multi-span lingustic parse tables to generate candidate mispronunciations for a target language. Compared to traditional phone re-writing rules, parse table modeling captures more context in the form of phone-clusters or syllables, and encodes abstract features such as word-internal position or syllable structure. The proposed approach is attractive because it gives a unified method for combining multiple levels of linguistic information. The reported experiments demonstrate word error rate reductions of up to 7.9% and 3.3% absolute on Italian and German accented English using lexicon adaptation alone, and 12.4% and 11.3% absolute when combined with acoustic adaptation.
机译:我们通过使用在多跨度语言分析表上训练的统计模型来生成针对目标语言的候选发音,来研究针对非母语口音的自动语音适应。与传统的电话重写规则相比,解析表建模以电话簇或音节的形式捕获更多上下文,并编码诸如单词内部位置或音节结构之类的抽象特征。所提出的方法很有吸引力,因为它提供了一种用于组合多级语言信息的统一方法。报道的实验表明,仅使用词典改编,意大利和德语重音英语的单词错误率降低高达7.9%和3.3%绝对值,而与声学改编相结合,则可以降低12.4%和11.3%绝对值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号