首页> 外文会议>2010 IEEE International Symposium on Parallel amp; Distributed Processing (IPDPS) >Exploiting inter-thread temporal locality for chip multithreading
【24h】

Exploiting inter-thread temporal locality for chip multithreading

机译:利用线程间时间局部性进行芯片多线程

获取原文
获取原文并翻译 | 示例

摘要

Multi-core organizations increasingly support multiple threads per core. Threads on a core usually share a single first-level data cache, so thread schedulers must try to minimize cache contention among threads. While this has been studied for concurrent threads with disjoint working sets, the problem has not been addressed for multi-threaded data-parallel workloads in which threads can be scheduled or constructed to improve inter-thread cache sharing. This paper proposes the symbiotic affinity scheduling (SAS) algorithm in which work is first partitioned according to the number of cores (i.e., the number of caches), and these partitions are then subdivided and scheduled among each core's available thread contexts so that threads sharing a core operate on neighboring elements to maximize cache locality. We demonstrate this concept with a series of data-parallel benchmarks. Simulations on M5 achieve an average speedup of 1.69?? and 36% energy savings over conventional scheduling techniques that are oblivious to whether threads share a cache. Even compared to an approach that extends oblivious scheduling to ensure that the sum of the threads' working sets fits in the cache, symbiotic affinity scheduling is able to exploit greater temporal locality and provide 30% performance gains on average. Symbiosis also outperforms adaptive contention reduction techniques by 17%.
机译:多核组织越来越多地支持每个核有多个线程。内核上的线程通常共享一个一级数据缓存,因此线程调度程序必须设法使线程之间的缓存争用最小化。尽管已针对具有不连续工作集的并发线程研究了此问题,但尚未解决多线程数据并行工作负载的问题,在多工作负载中,可以调度或构造线程以改善线程间缓存共享。本文提出了一种共生亲和性调度(SAS)算法,该算法首先根据内核数(即高速缓存数)对工作进行分区,然后在每个内核的可用线程上下文中对这些分区进行细分和调度,以便线程共享核心对相邻元素进行操作以最大化缓存位置。我们通过一系列数据并行基准测试来证明这一概念。在M5上的仿真可实现1.69的平均加速比。与不考虑线程是否共享缓存的传统调度技术相比,节能36%。即使与扩展遗忘的调度以确保线程的工作集的总和适合高速缓存的方法相比,共生亲和力调度也能够利用更大的时间局部性并平均提供30%的性能提升。共生也比自适应竞争减少技术的性能高17%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号