首页> 外文会议>2008 MRS spring meeting symposium proceedings >3D Thermal Stress Models for Single Chip SiC Power Sub-Modules
【24h】

3D Thermal Stress Models for Single Chip SiC Power Sub-Modules

机译:单芯片SiC功率子模块的3D热应力模型

获取原文
获取原文并翻译 | 示例

摘要

Three dimensional models of single chip SiC power sub-modules were generated using ANSYS in order to simulate the effects of various substrate materials, heat fluxes, and heat transfer coefficients on temperature and thermal stress contours. Silicon nitride, aluminum-nitride, alumina were compared as substrates with or without an additional layer of CVD diamond on either top or bottom of the surfaces. Simulated heat fluxes of 100 to 300 watts/cm2 resulted in device junction temperatures in the range of 359 to 7289 K. With modest cooling, represented by a heat transfer coefficient (hconv) of 3350 watts/m~2-K, SiC chips operated at 300 watts/cm~2 power density maintained junction temperatures T_j < 688 K. In the applied heat flux range, the maximum Von Mises stress of a simulated single SiC device sub-module was between 767 MPa to 54.9 GPa. Whereas, the maximum shear stress was between 153 MPa and 8.1 GPa. Regardless of stacking configuration, the maximum chip temperature, Von Mises stress, and shear stress decreased with increasing heat transfer coefficient from 50 to 5000 watts/m~2-K. If consistent with simulation results, CVD diamond integrated substrates should be superior in most cases to those comprised of only AlN, Al_2O_3, and Si_3N_4. Experimental validation of ANSYS results and more extensive multiple-chip power module simulations will be explored.
机译:为了模拟各种衬底材料,热通量和传热系数对温度和热应力轮廓的影响,使用ANSYS生成了单芯片SiC功率子模块的三维模型。比较了氮化硅,氮化铝,氧化铝作为在表面的顶部或底部是否具有CVD金刚石附加层的基材。模拟的100至300瓦特/厘米2的热通量导致器件结温范围为359至7289K。在适度冷却的情况下,以3350瓦特/ m〜2-K的传热系数(hconv)表示,SiC芯片工作在300瓦特/厘米〜2的功率密度下,结温T_j <688K。在施加的热通量范围内,模拟的单个SiC器件子模块的最大冯·米塞斯应力在767 MPa至54.9 GPa之间。而最大剪切应力在153 MPa和8.1 GPa之间。不管堆叠结构如何,最高芯片温度,冯·米塞斯应力和剪切应力都随着传热系数从50瓦/米〜2-K的增加而降低。如果与仿真结果一致,则在大多数情况下,CVD金刚石集成衬底应优于仅由AlN,Al_2O_3和Si_3N_4组成的衬底。将探讨ANSYS结果的实验​​验证以及更广泛的多芯片电源模块仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号