首页> 外文会议>1st EMNLP workshop blackboxNLP: analyzing and interpreting neural networks for NLP 2018 >Interpreting Word-Level Hidden State Behaviour of Character-Level LSTM Language Models
【24h】

Interpreting Word-Level Hidden State Behaviour of Character-Level LSTM Language Models

机译:解释字符级LSTM语言模型的字级隐藏状态行为

获取原文
获取原文并翻译 | 示例

摘要

While Long Short-Term Memory networks (LSTMs) and other forms of recurrent neural network have been successfully applied to language modeling on a character level, the hidden state dynamics of these models can be difficult to interpret. We investigate the hidden states of such a model by using the HDB-SCAN clustering algorithm to identify points in the text at which the hidden state is similar. Focusing on whitespace characters prior to the beginning of a word reveals interpretable clusters that offer insight into how the LSTM may combine contextual and character-level information to identify parts of speech. We also introduce a method for deriving word vectors from the hidden state representation in order to investigate the word-level knowledge of the model. These word vectors encode meaningful semantic information even for words that appear only once in the training text.
机译:虽然长短期记忆网络(LSTM)和其他形式的递归神经网络已成功地应用于字符级别的语言建模,但是这些模型的隐藏状态动态可能难以解释。我们通过使用HDB-SCAN聚类算法来研究文本中隐藏状态相似的点,从而研究了该模型的隐藏状态。在单词开头之前关注空白字符会发现可解释的类,这些类可提供有关LSTM如何结合上下文和字符级信息以识别语音部分的见解。我们还介绍了一种从隐藏状态表示中导出单词向量的方法,以研究模型的单词级知识。这些单词向量甚至对在训练文本中仅出现一次的单词也编码有意义的语义信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号