【24h】

Massive Semantic Web data compression with MapReduce

机译:使用MapReduce进行大规模语义Web数据压缩

获取原文
获取原文并翻译 | 示例

摘要

The Semantic Web consists of many billions of statements made of terms that are either URIs or literals. Since these terms usually consist of long sequences of characters, an effective compression technique must be used to reduce the data size and increase the application performance. One of the best known techniques for data compression is dictionary encoding. In this paper we propose a MapReduce algorithm that efficiently compresses and decompresses a large amount of Semantic Web data. We have implemented a prototype using the Hadoop framework and we report an evaluation of the performance. The evaluation shows that our approach is able to efficiently compress a large amount of data and that it scales linearly regarding the input size and number of nodes.
机译:语义网由数十亿条由URI或文字组成的语句组成。由于这些术语通常由较长的字符序列组成,因此必须使用有效的压缩技术来减小数据大小并提高应用程序性能。数据压缩的最著名技术之一是字典编码。在本文中,我们提出了一种MapReduce算法,该算法可以有效地压缩和解压缩大量语义Web数据。我们已经使用Hadoop框架实现了原型,并报告了性能评估。评估表明,我们的方法能够有效压缩大量数据,并且可以根据输入大小和节点数线性扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号