【24h】

Handling Missing Data in Multivariate Time Series Using a Vector Autoregressive Model Based Imputation (VAR-IM) Algorithm. Part II: VAR-IM Algorithm Versus Modern Methods

机译:使用基于向量自回归模型的插补(VAR-IM)算法处理多元时间序列中的缺失数据。第二部分:VAR-IM算法与现代方法

获取原文
获取原文并翻译 | 示例

摘要

This part of the paper introduces a comparison of VAR-IM algorithm with modern techniques used for missing data analysis. Quantitative methods are usually developed based on some fundamental understanding of the statistical analysis of the missing data. Various types of quantitative methods such as K nearest neighbour (KNN), (Multivariate Autoregressive state-Space) MARRS package and EM algorithm are discussed. The relative advantages and disadvantages of these approaches are highlighted. The performance of the vector autoregressive model based imputation methods is compared with that of three existing methods, namely, KNN, MARRRS and EM for dealing with missing data in multivariate time series, where an ECG dataset is used as an a case study. The results show that VAR-IM produces a better recovering performance for missing values than the other three methods. The advantages and limitations of the VAR-IM algorithm is also discussed.
机译:本文的这一部分介绍了VAR-IM算法与用于缺失数据分析的现代技术的比较。通常基于对丢失数据的统计分析的一些基本理解来开发定量方法。讨论了各种类型的定量方法,例如K最近邻(KNN),(多元自回归状态空间)MARRS包和EM算法。强调了这些方法的相对优缺点。将基于向量自回归模型的插补方法的性能与用于处理多元时间序列中缺失数据的三种现有方法(即KNN,MARRRS和EM)的性能进行比较,其中以ECG数据集为案例研究。结果表明,与其他三种方法相比,VAR-IM对于缺失值产生了更好的恢复性能。还讨论了VAR-IM算法的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号