首页> 外文会议>18th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications >Thermal-Constrained Energy-Aware Partitioning for Heterogeneous Multi-core Multiprocessor Real-Time Systems
【24h】

Thermal-Constrained Energy-Aware Partitioning for Heterogeneous Multi-core Multiprocessor Real-Time Systems

机译:异构多核多处理器实时系统的热约束能量感知分区

获取原文
获取原文并翻译 | 示例

摘要

Next-generation multi-core multiprocessor real-time systems consume less energy at the cost of increased power density. This increase in power-density results in high heat density and may affect the reliability and performance of real-time systems. Thus, incorporating maximum temperature constraints in scheduling of real-time task sets is an important challenge. This paper investigates thermal-constrained energy-aware partitioning of periodic real-time tasks in heterogeneous multi-core multiprocessor systems. We adopt a power model which considers the impact of temperature and voltage on a processor's static power consumption. Two types of thermal models are used to respectively capture negligible and non-negligible amount of heat transfer among cores. We develop a novel genetic-algorithm based approach to solve the heterogeneous multi-core multiprocessor partitioning problem. Extensive simulations were performed to validate the effectiveness of the approach. Experimental results show that integrating a worst-fit based partitioning heuristic with the genetic algorithm can significantly reduce the total energy consumption of a heterogeneous multi-core multiprocessor real-time system.
机译:下一代多核多处理器实时系统消耗的能量更少,但功耗增加了。功率密度的这种增加导致高的热密度,并可能影响实时系统的可靠性和性能。因此,将最大温度限制纳入实时任务集的调度是一项重要的挑战。本文研究异构多核多处理器系统中周期性实时任务的热约束能量感知分区。我们采用的功耗模型考虑了温度和电压对处理器静态功耗的影响。两种类型的热模型分别用于捕获铁心之间可忽略的和不可忽略的热量传递。我们开发了一种基于遗传算法的新方法来解决异构多核多处理器分区问题。进行了广泛的仿真以验证该方法的有效性。实验结果表明,将基于最不匹配的分区启发式算法与遗传算法相集成可以显着降低异构多核多处理器实时系统的总能耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号