【24h】

A Similarity Network Based Behavior Anomaly Detection Model for Computer Systems

机译:基于相似网络的计算机系统行为异常检测模型

获取原文
获取原文并翻译 | 示例

摘要

As modern computer systems become increasingly complex in infrastructure and usage, the demand for capabilities of detecting anomalous behavior has grown urgent. Although techniques for point anomaly detection have been proposed and adopted in practice, behavior anomaly detection still lacks effective approaches due to its inherent complexities. We present a new anomalous behavior detection model based on similarity network. Instead of learning behaviors according to frequencies of occurrences as current approaches do, our model exploits the similarity relationship between emerging behavior patterns. Specifically, a Markov model rank algorithm is performed on the similarity network to discover behavior anomalies. Our model is able to distinguish normal behavior patterns and anomalous ones in changing environments without training phase. We implemented this model and conducted extensive experiments on a range of data sets. Results show that our model can detect behavior anomalies in computer systems with high accuracy.
机译:随着现代计算机系统的基础结构和使用变得越来越复杂,对检测异常行为的能力的需求日益迫切。尽管已经提出并在实践中采用了点异常检测技术,但是行为异常检测由于其固有的复杂性仍然缺乏有效的方法。我们提出了一种基于相似网络的新的异常行为检测模型。我们的模型不是像当前方法那样根据发生频率来学习行为,而是利用新兴行为模式之间的相似关系。具体地,在相似性网络上执行马尔可夫模型等级算法以发现行为异常。我们的模型能够在变化的环境中区分正常的行为模式和异常行为,而无需训练阶段。我们实施了该模型,并对一系列数据集进行了广泛的实验。结果表明,我们的模型可以高精度地检测计算机系统中的行为异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号