首页> 外文会议>16th workshop on biomedical natural language processing >Automatic Diagnosis Coding of Radiology Reports: A Comparison of Deep Learning and Conventional Classification Methods
【24h】

Automatic Diagnosis Coding of Radiology Reports: A Comparison of Deep Learning and Conventional Classification Methods

机译:放射学报告的自动诊断编码:深度学习和常规分类方法的比较

获取原文
获取原文并翻译 | 示例

摘要

Diagnosis autocoding is intended to both improve the productivity of clinical coders and the accuracy of the coding. We investigate the applicability of deep learning at autocoding of radiology reports using International Classification of Diseases (ICD). Deep learning methods are known to require large training data. Our goal is to explore how to use these methods when the training data is sparse, skewed and relatively small, and how their effectiveness compares to conventional methods. We identify optimal parameters for setting up a convolutional neural network for autocoding with comparable results to that of conventional methods.
机译:诊断自动编码旨在提高临床编码人员的工作效率和编码准确性。我们使用国际疾病分类(ICD)在放射学报告的自动编码中调查深度学习的适用性。众所周知,深度学习方法需要大量的训练数据。我们的目标是探索当训练数据稀疏,偏斜且相对较小时如何使用这些方法,以及它们与传统方法相比如何有效。我们确定了用于建立卷积神经网络以进行自动编码的最佳参数,其结果可与传统方法相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号