首页> 外文会议>16th workshop on biomedical natural language processing >Toward Automated Early Sepsis Alerting: Identifying Infection Patients from Nursing Notes
【24h】

Toward Automated Early Sepsis Alerting: Identifying Infection Patients from Nursing Notes

机译:走向自动化的早期脓毒症警报:从护理记录中识别感染患者

获取原文
获取原文并翻译 | 示例

摘要

Severe sepsis and septic shock are conditions that affect millions of patients and have close to 50% mortality rate. Early identification of at-risk patients significantly improves outcomes. Electronic surveillance tools have been developed to monitor structured Electronic Medical Records and automatically recognize early signs of sepsis. However, many sepsis risk factors (e.g. symptoms and signs of infection) are often captured only in free text clinical notes. In this study, we developed a method for automatic monitoring of nursing notes for signs and symptoms of infection. We utilized a creative approach to automatically generate an annotated dataset. The dataset was used to create a Machine Learning model that achieved an Fl-score ranging from 79 to 96%.
机译:严重的败血症和败血性休克是影响数百万患者的疾病,死亡率接近50%。早期识别高危患者可显着改善预后。已经开发了电子监视工具来监视结构化的电子病历并自动识别败血症的早期征兆。但是,许多败血症危险因素(例如症状和感染体征)通常仅在自由文本临床笔记中记录。在这项研究中,我们开发了一种自动监控护理说明是否有感染迹象和症状的方法。我们利用一种创新的方法来自动生成带注释的数据集。该数据集用于创建机器学习模型,该模型的F1分数达到79%至96%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号