首页> 外文会议>16th workshop on biomedical natural language processing >Improving Correlation with Human Judgments by Integrating Semantic Similarity with Second-Order Vectors
【24h】

Improving Correlation with Human Judgments by Integrating Semantic Similarity with Second-Order Vectors

机译:通过将语义相似度与二阶向量相集成来改善与人类判断的相关性

获取原文
获取原文并翻译 | 示例

摘要

Vector space methods that measure semantic similarity and relatedness often rely on distributional information such as co-occurrence frequencies or statistical measures of association to weight the importance of particular co-occurrences. In this paper, we extend these methods by incorporating a measure of semantic similarity based on a human curated taxonomy into a second-order vector representation. This results in a measure of semantic relatedness that combines both the contextual information available in a corpus-based vector space representation with the semantic knowledge found in a biomedical ontology. Our results show that incorporating semantic similarity into a second order co-occurrence matrices improves correlation with human judgments for both similarity and relatedness, and that our method compares favorably to various different word embedding methods that have recently been evaluated on the same reference standards we have used.
机译:度量语义相似性和相关性的向量空间方法通常依赖于分布信息(例如共现频率或关联的统计度量)来加权特定共现的重要性。在本文中,我们通过将基于人类策划的分类法的语义相似性度量纳入二阶向量表示法来扩展这些方法。这导致语义相关性的度量,该度量将基于语料库的向量空间表示中可用的上下文信息与生物医学本体中发现的语义知识相结合。我们的结果表明,将语义相似度合并到二阶共现矩阵中可改善与人类对相似度和相关性的判断的相关性,并且我们的方法与最近在相同参考标准上进行评估的各种不同的词嵌入方法相比具有优势用过的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号