【24h】

Mining Trip Attractive Areas Using Large-Scale Taxi Trajectory Data

机译:使用大型出租车轨迹数据挖掘出行吸引区域

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of location aware computing technologies, the research of data mining for spatial-temporal trajectories has attracted many scholars. As an important data source, through the GPS receivers taxis provide researchers with massive trajectory data, which are featured by their high quality, good continuity and wide distribution, making it suitable for travel pattern mining. In this paper, we study on urban residents' trip attractive areas with trajectory data of about 10000 taxis in Chongqing city, to discover the characteristics of urban traffic distribution to serve for the construction of modern intelligent traffic system. Firstly, a framework of trajectory preprocessing, including data cleaning, extraction for the taxi passenger pick-up points and drop-off points, is presented to reduce the noise and redundancy in raw trajectory data. Secondly, in the light of the shortcomings of the existing mining methods for attractive areas, such as high complexity and poor scalability, we propose a grid density based clustering algorithm to mine the trip attractive areas in different periods. In the experiments, we take a performance comparison between our algorithm and DBSCAN algorithm, and discuss how to determine the optimal parameters of our algorithm. Then, we verify the practicability of our algorithm with real data.
机译:随着位置感知计算技术的飞速发展,时空轨迹数据挖掘的研究吸引了许多学者。作为重要的数据源,出租车通过GPS接收器为研究人员提供了大量的轨迹数据,这些数据具有高质量,连续性好和分布广泛的特点,非常适合旅行模式挖掘。本文利用重庆市约1万辆出租车的轨迹数据研究了城市居民出行的吸引力区域,以发现城市交通分布的特征,为现代智能交通系统的建设服务。首先,提出了一种轨迹预处理的框架,包括数据清洗,出租车乘客上车点和下车点的提取,以减少原始轨迹数据的噪声和冗余。其次,针对现有吸引区域挖掘方法存在的复杂性高,可扩展性差等缺点,提出了一种基于网格密度的聚类算法,用于挖掘不同时期出行吸引区域。在实验中,我们将算法与DBSCAN算法进行了性能比较,并讨论了如何确定算法的最佳参数。然后,我们用真实数据验证了该算法的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号