【24h】

Energy Efficient Resource Management and Task Scheduling for IoT Services in Edge Computing Paradigm

机译:边缘计算范式中的IoT服务的能源高效资源管理和任务调度

获取原文
获取原文并翻译 | 示例

摘要

With the growing popularity of the Internet of Things (IoT), energy efficiency has been a critical concern during the design and development of IoT service systems. Meanwhile, edge computing has drawn significant attention as a burgeoning computing paradigm. This paper studies the energy efficiency issue of IoT systems by proposing a joint scheme of resource allocation and task scheduling under the edge computing paradigm. Specifically, dynamic processes of the IoT services and system are formulated by generalized queueing network models, based on which quantitative analyses of performance and energy consumption are conducted. The resource management and task scheduling are formulated by Markov Decision Process (MDP), which can balance the tradeoff between energy costs and QoS requirements. To attack the challenge of MDP search space explosion due to the large scale of IoT systems, Ordinal Optimization (OO) techniques are applied to the MDP algorithms, which are able to significantly narrow the search of MDP by slightly softening the optimization objective to a good enough subset. Finally, we conduct simulation experiments based on real-world IoT data. Evaluations and comparisons demonstrate that our approach is effective and efficient in practice.
机译:随着物联网(IoT)的日益普及,能源效率已成为IoT服务系统设计和开发过程中的关键问题。同时,边缘计算作为一种新兴的计算范例已引起了广泛的关注。通过提出边缘计算范式下的资源分配与任务调度联合方案,研究了物联网系统的能效问题。具体而言,物联网服务和系统的动态过程由广义排队网络模型制定,在此基础上进行性能和能耗的定量分析。资源管理和任务调度由马尔可夫决策过程(MDP)制定,可以平衡能源成本和QoS要求之间的权衡。为了应对由于物联​​网系统规模庞大而导致的MDP搜索空间爆炸的挑战,将序贯优化(OO)技术应用于MDP算法,通过将优化目标略微软化到良好状态,能够显着缩小MDP的搜索范围足够的子集。最后,我们基于现实世界的物联网数据进行仿真实验。评估和比较表明,我们的方法在实践中是有效和高效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号