【24h】

Load Balancing for Minimizing Deadline Misses and Total Runtime for Connected Car Systems in Fog Computing

机译:进行负载平衡以在雾计算中最大程度地减少联网汽车系统的最后期限丢失和总运行时间

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing provides a pool of highly available resources for applications to use to offload their tasks, but new applications such as coordinated lane-change assistance used in connected car systems have strict timing requirements that cannot be met by offloading tasks only to the cloud. Fog computing reduces latency by bringing the computation from remote datacenters to local fog servers, which are connected in close proximity to clients. Although fog computing lowers the latency for transferring data, load balancing among fog servers still needs to be addressed for better timing performance. The challenges include a large number of tasks, mobility of the clients, and heterogeneity of the fog servers. In this paper we use connected car systems as a motivating application, and first show that we can utilize mobility patterns of vehicles to perform periodic load balancing in fog servers.We then present a task model that solves the scheduling problem at the server level instead of device level. And finally we formulate a load balancing optimization problem for minimizing deadline misses and total runtime for connected car systems in fog computing. We show that it outperforms some common heuristics such as weighted round-robin, active monitoring, and throttled load balancer.
机译:云计算为应用程序提供了高可用性资源池,可用于卸载任务,但是新应用程序(例如,互联汽车系统中使用的协调车道转换辅助系统)具有严格的时序要求,仅将任务卸载到云中无法满足。雾计算通过将计算从远程数据中心带到与客户端紧密相连的本地雾服务器来减少延迟。尽管雾计算降低了传输数据的延迟,但是雾服务器之间的负载平衡仍然需要解决,以获得更好的计时性能。挑战包括大量任务,客户端的移动性以及雾服务器的异构性。在本文中,我们将互联汽车系统用作激励应用程序,并首先展示了我们可以利用车辆的移动性模式在雾服务器中执行定期负载均衡,然后提出了一种任务模型来解决服务器级的调度问题设备级别。最后,我们制定了一个负载平衡优化问题,以使雾计算中的联网汽车系统的最后期限丢失和总运行时间最小化。我们证明它的性能优于一些常见的启发式算法,例如加权轮询,主动监控和节流负载均衡器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号