首页> 外文会议>15th IEEE International Symposium on Parallel and Distributed Processing with Applications and 16th IEEE International Conference on Ubiquitous Computing and Communications >An Efficient Parallelization Approach for Large-Scale Sparse Non-Negative Matrix Factorization Using Kullback-Leibler Divergence on Multi-GPU
【24h】

An Efficient Parallelization Approach for Large-Scale Sparse Non-Negative Matrix Factorization Using Kullback-Leibler Divergence on Multi-GPU

机译:多GPU上使用Kullback-Leibler发散的大规模稀疏非负矩阵分解的有效并行化方法

获取原文
获取原文并翻译 | 示例

摘要

Matrix factorization (MF), as one of the most accurate and scalable approaches in dimension reduction techniques, has become popular in the collaborative filtering (CF) recommender systems, social network and graph communities. Currently, Kullback-Lerbler Non-negative Matrix Factorization (KL-NMF) is one of the most famous approaches for MF, due to its representative non-negativity feature of the CF model. However, it is non-trivial to obtain high performance KL-NMF on Graphic Processing Units (GPU) for large-scale problems, due to the redundant large-scale intermediate data, frequent matrices manipulation, and access of sparse and irregular entries characteristic of KL-NMF. In this work, we propose single-thread-based KL-NMF, which depends on the involved feature tuples multiplication and summation, and then, we present L2norm regularized single-thread-based KL-NMF. On that basis, a novel CUDA parallelization KL-NMF approach (CuKL-NMF) is presented for GPU computing. Furthermore, to process large-scale CF data sets and make advantages of GPU computation power, we propose multi-GPU CuKL-NMF (MCuKL-NMF). Compared with state-of-the-art parallel algorithms, e.g., CUMF, CCD++, MCuKL-NMF obtains the highest performance.
机译:作为降维技术中最准确和可扩展的方法之一,矩阵分解(MF)已在协作过滤(CF)推荐器系统,社交网络和图形社区中流行。当前,Kullback-Lerbler非负矩阵分解(KL-NMF)是MF最著名的方法之一,因为它具有CF模型的代表性非负特性。但是,由于冗余的大规模中间数据,频繁的矩阵操作以及对稀疏和不规则条目的访问,对于大型问题,在图形处理单元(GPU)上获得高性能KL-NMF并非易事。 KL-NMF。在这项工作中,我们提出了基于单线程的KL-NMF,这取决于所涉及的特征元组的乘法和求和,然后,我们给出L \ n 2 \ nnorm正则化基于单线程的KL-NMF。在此基础上,提出了一种用于GPU计算的新颖CUDA并行化KL-NMF方法(CuKL-NMF)。此外,为了处理大型CF数据集并利用GPU的计算能力,我们提出了多GPU CuKL-NMF(MCuKL-NMF)。与最新的并行算法(例如CUMF,CCD ++)相比,MCuKL-NMF可获得最高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号