【24h】

INFLUENCE OF SIMULATION PARAMETERS ON THE SPEED AND ACCURACY OF MONTE CARLO CALCULATIONS USING PENEPMA

机译:模拟参数对使用PENEPMA进行蒙特卡罗计算的速度和准确性的影响

获取原文
获取原文并翻译 | 示例

摘要

PENEPMA [1, 2] is a dedicated programme for the simulation of electron probe microanalysis (EPMA) measurements which uses the general-purpose Monte Carlo simulation subroutine package PENELOPE [3]. The operation of PENEPMA is completely controlled from an input data file, which is edited by the user to set up the characteristics of their experiment (e.g., the electron beam parameters, the sample material and geometry, photon detectors, X-ray lines, etc.). The user can also set a number of simulation parameters which define the particle tracking algorithm and the different variance reduction techniques implemented in PENELOPE. These parameters determine the speed and accuracy of the simulation; tuning these parameters adequately can greatly improve the efficiency of the simulation. In this communication we analyse and discuss the effect of using different simulation parameters on the simulation speed for typical cases of interest in EPMA. These include the simulation of the characteristic X-ray intensity emitted from bulk and thin film samples, and the simulation of secondary fluorescence across the vertical boundary of a material couple. The simulation parameters that can be optimised in PENELOPE can be divided into cut-off energies (the electron absorption energy E_(abs,el) and the photon absorption energy E_(abs,ph)), physics parameters of the simulation algorithm (the average angular deflection C_1 and the maximum average fractional energy loss C_2 in single steps, the cut-off energy loss for hard inelastic collisions W_(cc) and the cut-off energy loss for hard bremsstrahlung emission W_(cr)) and variance-reduction parameters (the forcing factors for characteristic X-rays and bremsstrahlung photons f_(ch) and f_b and the splitting factors for characteristic X-rays and bremsstrahlung photons S_(ch) and S_b). Note that for samples consisting of different materials, all these parameters can be specified for each material. Also, the interaction forcing factors can be optimised independently for each interaction mechanism. Table 1 shows the CPU time T required to achieve a precision of 1% (at 3 σ level) in the intensity I of the Fe K-L2 X-ray line emitted from a bulk Fe sample bombarded with an electron beam of 20 kV, for different combinations (gradually varying) of the simulation parameters 2_(abs,el), E_(abs,ph), C_1, C_2, W_(cc), W_(cr), as well as forcing factors f_(ch) and f_b and splitting factors S_(ch) and sb. The tests were performed on an Intel Core i7 2.93 GHz processor with a RAM size of 8 GB. Table 1 also lists the efficiency ε of a simulation run, defined as ε=(I/3σ)~2 (1/7). We can see that a precision of 1 % can be achieved in about one minute (case 8) by setting C_1 and C_2 to their maximum allowed values, adjusting the absorption energies E_(abs,el) and E_(abs,ph) to values slightly lower than the ionisation energy of the Fe K-shell, and setting W_(cc), and W_(cr) to about 1 keV, and by using moderately large forcing factors and splitting factors. The selection of these simulation parameters, which does not alter practically the accuracy of results, represents an increase in simulation speed of ~11,000 times relatively to a detailed simulation with non-optimised cutoffs of 50 eV (case 1).
机译:PENEPMA [1,2]是用于仿真电子探针微分析(EPMA)测量的专用程序,它使用通用的Monte Carlo仿真子例程程序PENELOPE [3]。 PENEPMA的操作完全由输入数据文件控制,用户可以对其进行编辑以设置其实验特征(例如,电子束参数,样品材料和几何形状,光子探测器,X射线线等) )。用户还可以设置许多模拟参数,这些参数定义了粒子跟踪算法和PENELOPE中实现的不同方差减少技术。这些参数决定了仿真的速度和准确性。适当调整这些参数可以大大提高仿真效率。在本交流中,我们分析和讨论了在EPMA中感兴趣的典型情况下,使用不同的仿真参数对仿真速度的影响。这些包括模拟从块状和薄膜样品发出的特征X射线强度,以及模拟跨材料对垂直边界的二次荧光。在PENELOPE中可以优化的模拟参数可以分为截止能量(电子吸收能E_(abs,el)和光子吸收能E_(abs,ph)),模拟算法的物理参数(平均值单个步骤中的角偏转C_1和最大平均分数能量损失C_2,硬非弹性碰撞的截止能量损失W_(cc)和硬致辐射发射的截止能量损失W_(cr))和方差减小参数(特征X射线和致辐射光子f_(ch)和f_b的强迫因子以及特征X射线和致辐射光子S_(ch)和S_b的分裂因子)。注意,对于由不同材料组成的样品,可以为每种材料指定所有这些参数。同样,可以针对每种交互机制独立地优化交互强迫因素。表1显示了以20 kV电子束轰击的大量Fe样品发射的Fe K-L2 X射线线的强度I达到1%精度(在3σ水平)所需的CPU时间T,对于模拟参数2_(abs,el),E_(abs,ph),C_1,C_2,W_(cc),W_(cr)的不同组合(逐渐变化)以及强迫因子f_(ch)和f_b和分裂因子S_(ch)和sb。测试是在RAM大小为8 GB的Intel Core i7 2.93 GHz处理器上进行的。表1还列出了模拟运行的效率ε,定义为ε=(I /3σ)〜2(1/7)。我们可以看到,通过将C_1和C_2设置为它们的最大允许值,并将吸收能E_(abs,el)和E_(abs,ph)调整为值,可以在大约一分钟内(情况8)达到1%的精度。略低于Fe K-壳的电离能,并通过使用适当大的强迫因子和分裂因子将W_(cc)和W_(cr)设置为大约1 keV。这些仿真参数的选择实际上不会改变结果的准确性,相对于50 eV非最佳截止的详细仿真(案例1),仿真速度提高了约11,000倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号