【24h】

Assessing the Impact of Network Compression on Molecular Dynamics and Finite Element Methods

机译:评估网络压缩对分子动力学和有限元方法的影响

获取原文
获取原文并翻译 | 示例

摘要

Efficient communication in parallel applications is one of the main challenges for the scalability of supercomputers, both in weak and strong scaling environments. In the past, several compression techniques have been proposed as a way to improve the performance and scalability of parallel applications. Those works have shown significant speed-ups when applying compressors to the MPI transfers of certain algorithmic kernels. However, these techniques have not seen widespread adoption in current supercomputers. This paper evaluates the bottlenecks of network compression that have precluded their generalized adoption in HPC environments. In order to evaluate their impact on real applications we integrated multiple MPI compression schemes into two production applications: a computational mechanics code dominated by point-to-point communication, and a molecular dynamics code dominated by collective communications. While the applications observe some improvements when applying aggressive lossy compression schemes on systems ranging from 4 to 256 processors, the overall results seem to contradict earlier research. We conclude that HPC data traffic tends to be too statistically random to be captured by general lossless compressors, and that the size of MPI message is most often not the limiting component of these communication-bound applications. We also observed that aggressive lossy compression worked well and did not distort the results of the evaluated applications. This suggests that reducing network bandwidth in conjunction with message compression may be an interesting technique to increase energy efficiency in HPC systems.
机译:在弱和强伸缩环境中,并行应用程序中的有效通信都是超级计算机可伸缩性的主要挑战之一。过去,已经提出了几种压缩技术,以提高并行应用程序的性能和可伸缩性。当将压缩器应用于某些算法内核的MPI传输时,这些工作已显示出明显的提速。但是,这些技术尚未在当前的超级计算机中得到广泛采用。本文评估了阻止网络压缩在HPC环境中普遍采用的瓶颈。为了评估它们对实际应用的影响,我们将多种MPI压缩方案集成到两个生产应用中:以点对点通信为主的计算力学代码和以集体通信为主的分子动力学代码。当应用程序在从4到256个处理器的系统上采用积极的有损压缩方案时,应用程序观察到一些改进时,总体结果似乎与早期的研究相矛盾。我们得出的结论是,HPC数据流量在统计上往往过于随机,无法被一般的无损压缩器捕获,并且MPI消息的大小通常不是这些受通信限制的应用程序的限制组成部分。我们还观察到,积极的有损压缩效果很好,并且不会扭曲所评估应用程序的结果。这表明与消息压缩一起减少网络带宽可能是提高HPC系统能效的有趣技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号