首页> 外文会议>10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing >Cooperative Multitasking for GPU-Accelerated Grid Systems
【24h】

Cooperative Multitasking for GPU-Accelerated Grid Systems

机译:GPU加速网格系统的协作式多任务处理

获取原文
获取原文并翻译 | 示例

摘要

Exploiting the graphics processing unit (GPU) is useful to obtain higher performance with a less number of host machines in grid systems. One problem in GPU-accelerated grid systems is the lack of efficient multitasking mechanisms. In this paper, we propose a cooperative multitasking method capable of simultaneous execution of a graphics application and a CUDA-based scientific application on a single GPU. To prevent significant performance drop in frame rate, our method (1) divides scientific tasks into smaller subtasks and (2) serially executes them at the appropriate intervals. Experimental results show that the proposed method is useful to control the frame rate of the graphics application and the throughput of the scientific application. For example, matrix multiplication can be processed at 50% of the dedicated throughput while achieving interactive rendering at 54 frames per second.
机译:利用图形处理单元(GPU)有助于在网格系统中使用较少数量的主机来获得更高的性能。 GPU加速的网格系统中的一个问题是缺乏有效的多任务处理机制。在本文中,我们提出了一种协作式多任务处理方法,该方法能够在单个GPU上同时执行图形应用程序和基于CUDA的科学应用程序。为了防止帧速率显着降低,我们的方法(1)将科学任务分成较小的子任务,并且(2)以适当的时间间隔依次执行它们。实验结果表明,该方法对控制图形应用的帧速率和科学应用的吞吐量非常有用。例如,矩阵乘法可以以专用吞吐量的50%处理,同时以每秒54帧的速度实现交互式渲染。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号