首页> 外国专利> Processes for regenerating dispersions of ligand-stabilized, palladium(II) halide complexes used in carbonylation catalysts

Processes for regenerating dispersions of ligand-stabilized, palladium(II) halide complexes used in carbonylation catalysts

机译:羰基化催化剂中配体稳定的卤化钯(II)配合物的分散体再生方法

摘要

This invention concerns processes for the regeneration of carbonylation catalysts consisting of dispersions of ligand-stabilized palladium(II) halide complexes in quaternary ammonium, phosphonium and arsonium salts of trihalostannate(II) and trihalogermanate(II) using organic peroxides as the regenerating agent.PPSTATEMENT OF THE INVENTIONPPThis invention pertains to the art of regenerating spent palladium carbonylation catalysts useful for the carbonylation of olefins.PPMore particularly, this invention concerns the regeneration of certain carbonylation catalysts consisting of dispersions of ligand-stabilized palladium(II) halide complexes in quaternary ammonium, phosphonium and arsonium salts of trihalostannate(II) and trihalogermanate(II) using substantially anhydrous organic peroxide reagents.PPBACKGROUND OF THE INVENTIONP PThis invention concerns a process for regenerating certain palladium catalysts used in the carbonylation of olefins. Carbonylation refers here to the reaction of &agr;-olefins with carbon monoxide and active-hydrogen-containing compounds selected from the group consisting of alkanols or water. The major products of carbonylation are fatty(carboxylic) acids and their esters.P PThe preparation of the fatty acids or fatty acid esters using metal carbonyls or carbonyl precursors to catalyze the carbonylation of olefins is old in the literature, originally involving Reppe and his coworkers and contemporaries. Reviews by C.W. Bird Chem. Rev.62, 283 (1962)! document this work. Unfortunately, many of these carbonyl or carbonyl- type catalysts have the disadvantages of inherent toxicity, they require stringent reaction conditions which in turn lead to competing side reactions such as olefin isomerization, polymerization and reduction, and they exhibit poor selectivity to the desired linear acid ester.P P Recently, more acceptable homogeneous catalyst systems have been developed which offer substantially improved selectivity in converting olefins to primarily linear fatty acids or linear fatty esters, in good yield, under moderate reaction conditions of temperature and pressure.P PAs is usually the case, after much more extensive usage, certain drawbacks in the catalysts have become more evident. These include difficulty in maintaining high conversions, high selectivities and high yields after recycling the catalyst several times. These problems are due to catalyst degradation as well as catalyst decomposition, mechanical losses and further catalyst decomposition during the separation of the products from the homogeneous catalysts and the inert solvents of the reaction mixture. Thermal instability of the catalyst is particularly troublesome in the recovery and working-up of certain ligand-stabilized homogeous palladium catalyst reaction mixtures. PP In order to avoid or minimize these problems, the use of molten quaternary ammonium, phosphonium and arsonium salts of trihalostannate(II) and trihalogermanate (II) as both solvent and part of the catalytic entity has been disclosed, particularly in the two U.S. patents of G.W. Parshall, U.S. Pat. Nos. 3,657,368 and 3,565,823, which are known in the art as well as in applicant's Ser. No. 526,867 filed 11/25/74 in the U.S. Patent Office. More recently, two procedures, involving distillation and solvent extraction, for isolating product fatty acids/esters from palladium carbonylation catalysts consisting of dispersions of ligand-stabilized palladium(II) halides in quaternary ammonium, phosphonium and arsonium salts of trihalostannate(II) and trihalogermante(II) have been set forth in Ser. No. 581,320 and Ser. No. 581,395 both filed May 27, 1975. Following the separation of the catalyst and fatty acid ester products by these methods the palladium catalyst is suitable for recycle with fresh olefin/alcohol feed. Claims to the regeneration of the same palladium catalysts after multiple cycling by chlorination or treatment with mineral acid are also set forth in the above two applications. Each of these applications also discloses that a useful carbonylation must have:PP1. A simple and efficient means of separating catalysts from the products,P P2. The ability to recycle the catalyst without its substantial deactivation. This is particularly important since the palladium catalysts are thermally sensitive, andPP3. A capability of operating at high concentrations of catalyst in the feed stream, thereby minimizing capital costs.PPDESCRIPTION OF THE INVENTIONPPThe innovative and claimed aspect of this application is the discovery that the loss of catalytic activity of the above mentioned spent palladium carbonylation dispersion catalysts, can be restored by treatment of the catalysts with substantially anhydrous organic peroxides. The use of the latter (alternatively referred to as hydroperoxides) reagents is exemplified in Example 1, described infra. Here the octene, ethanol mixture is carbonylated by the procedure described, the ethyl nonanoate ester recovered by distillation, and after five cycles, the solid catalyst regenerated as follows:PP 1. The recovered catalyst is treated with organic peroxide reagent, preferably in the presence of an inert solvent, and the mixture heated under an inert atmosphere.PP2. Excess liquid is removed by distillation under reduced pressure.PP3. Additional stabilizing ligand, such as triphenylphosphine, is added to the cooled melt catalyst after peroxide treatment in the mole ratio of 1-10 mole ligand per mole Pd. The regenerated catalyst is then ready for recycle to the carbonylation reactor with fresh olefin/alcohol feed.P PGenerally speaking, a wide range of peroxide and hydroperoxide reagents may be employed to regenerate said palladium carbonylation catalysts, Suitable hydroperoxide reagents include tert- butylhydroperoxide, cumene hydroperoxide, p-menthane hydroperoxide and 2, 5-dimethylhexyl-2,5-dihydroperoxide. Suitable peroxide reagents include carprylyl peroxide, lauroyl peroxide, acetyl peroxide, benzoyl peroxide, p-chlorobenzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, t-butyl peracetate, t-butyl perbenzoate, and methyl ethyl ketone peroxide. PPAt least a stoichiometric amount of peroxide reagent should be added to the spent palladium catalyst in order to achieve satisfactory regeneration, that is at least one mole of peroxide regent per gram atom of palladium present in the catalyst. Preferably, an excess of peroxide reagent should be employed, from 1 to 10.sup.4 moles of peroxide reagent per gram atom of palladium. Regeneration is judged to have occurred when a sample of treated catalyst delivers a selectivity to the desired linear fatty (carboxylic) acid or ester of between 70 and 95%, and a yield of total ester of from 20 to 95%.PP The peroxide or hydroperoxide regenerating reagents may be added to the spent catalyst neat, but preferably they are added in dilute form in the presence of a dried, inert solvent. Suitable inert solvents include among others, paraffinic solvents such as petroleum ethers, heptane, hexane and n- octane etc., ketones such as methyl isobutyl ketone, acetone and methyl ethyl ketone, chlorinated solvents such as o-dichlorobenzene, methylene chloride, and chloronaphthalenes, sulphones such as dimethylsulphone, aromatics such as benzene, toluene and xylenes, and mixtures thereof. PPThe quatity of solvent used to dilute the organic peroxide or hydroperoxide reagent is not critical as to volume, for convenience sake about 0.1 parts by volume to 10.sup.4 parts by volume of inert solvent may be employed for each volume part of peroxide reagent. Likewise the time and temperature of regeneration are not initial, and temperatures of 20° to 150° C may be employed for 0.01 to 48 hours, according to the choice of palladium catalyst to be regenerated, and the choice of peroxide reagent.PP Catalyst regeneration is normally carried out in the presence of an inert atmosphere. This may be nitrogen, helium, argon, neon, carbon dioxide, or mixtures thereof, or the regeneration may be carried out in vacuo. PPRegeneration of palladium carbonylation catalysts with peroxide reagents is exemplified infra in Example 1 for the melt complex (C.sub.2 H.sub.5).sub.4 N! SnCl.sub.3 !-PdCl.sub.2 P(C.sub.6 H.sub.5).sub. 3 !.sub.2. Other palladium carbonylation catalysts beyond (C.sub.2 H.sub. 5).sub.4 N! SnCl.sub.3 !-PdCl.sub.2 P(C.sub.6 H.sub.5).sub.3 !.sub.2 may also be generated by this technique. These catalysts generally consist of ligand-stabilized palladium(II) halide complexes dispersed in quaternary ammonium, phosphonium and arsonium salts of trihalostannate(II) and trihalogermanate(II). They are illustrated, but not limited by, the carbonylation catalysts described in Examples 8 to 14.PP Other substrate mixtures beyond the 1-octene, ethanol used in Example 1 may also be carbonylated by the regenerated palladium carbonylation catalysts. Some typical examples are given in Examples 15 to 20, described infra. Generally, for the carbonylation of &agr;-olefins, as exemplified in equation 1, R.sub.1 and R.sub.2, individually, may by hydrogen, alkyl up to 12 carbon atoms, alkenyl up to 12 carbon atoms, or aryl up to 12 carbon atoms, or mixed alklaryl or arylalkyl groups. Suitable alkanols (ROH) ##STR1## include primary and secondary alcohols of 1 to 12 carbon atoms, phenols, substituted alcohols and polyols. The major products of the carbonylation reaction are fatty (carboxylic) acids and their esters.
机译:本发明涉及羰基化催化剂的再生方法,该方法由配体稳定的卤化钯(II)配合物在三卤锡酸根(II)和三卤代高锰酸根(II)的季铵盐,phospho盐和son盐中的分散体组成,使用有机过氧化物作为再生剂。发明内容本发明涉及用于烯烃羰基化的废钯羰基化催化剂的再生技术。更具体地说,本发明涉及某些烯烃的再生。由配体稳定的卤化钯(II)配合物在三卤锡酸根(II)和三卤代锰酸根(II)的季铵盐,phospho盐和son盐中的分散体组成的羰基化催化剂,使用基本上无水的有机过氧化物试剂。本发明涉及一种用于烯烃羰基化的某些钯催化剂的再生方法。羰基化在此是指α-烯烃与一氧化碳和选自链烷醇或水的含活性氢的化合物的反应。羰基化的主要产物是脂肪(羧酸)及其酯。

使用金属羰基或羰基前体来催化烯烃的羰基化来制备脂肪酸或脂肪酸酯在文献中是古老的,最初是在文献中。包括Reppe及其同事和当代人。 C.W. Bird Chem。的评论Rev.62,283(1962)!记录这项工作。不幸的是,许多这些羰基或羰基型催化剂具有固有毒性的缺点,它们要求严格的反应条件,这又导致竞争性副反应,例如烯烃的异构化,聚合和还原,并且它们对所需的线性酸的选择性差。

最近,人们开发出了更加可接受的均相催化剂体系,该体系在温度和压力适中的反应条件下,以高收率将烯烃转化为线性脂肪酸或线性脂肪酯的选择性大大提高。通常,在更广泛地使用之后,催化剂中的某些缺点变得更加明显。这些包括在多次循环催化剂后难以维持高转化率,高选择性和高产率。这些问题归因于在产物从均相催化剂和反应混合物的惰性溶剂分离过程中催化剂降解以及催化剂分解,机械损失和催化剂进一步分解。在某些配体稳定的均相钯催化剂反应混合物的回收和后处理中,催化剂的热不稳定性特别麻烦。

为了避免或最小化这些问题,已经公开了使用熔融的三卤锡酸酯(II)和三卤代高铁酸盐(II)的季铵盐,phospho盐和砷盐作为溶剂和部分催化实体,特别是GW的两项美国专利中美国专利号Parshall美国专利No.3,657,368和3,565,823,其在本领域以及在申请人的Ser.Ser.No.3,No.1,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No.2,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No.3,No。美国专利局于11/25/74提交的美国专利526,867。最近,有两种方法,涉及蒸馏和溶剂萃取,用于从钯羰基化催化剂中分离出产物脂肪酸/酯,该催化剂由配体稳定的卤化钯(II)的三卤代锡酸盐(II)和三卤代锰酸酯的季铵盐,phospho盐和son盐的分散体组成。 (II)已在Ser中阐明。 581,320和Ser。 1975年5月27日提交的美国专利No.581,395。在通过这些方法分离催化剂和脂肪酸酯产物之后,钯催化剂适合于与新鲜的烯烃/醇进料一起再循环。在以上两个申请中也提出了在通过氯化或用无机酸处理的多次循环之后再生相同钯催化剂的权利要求。这些申请中的每一个还公开了有用的羰基化必须具有:P 1。从产物

2中分离催化剂的简单有效的方法。能够在不使其大量失活的情况下再循环催化剂的能力。这是特别重要的,因为钯催化剂是热敏的,并且是P 3和P 3。在进料流中催化剂的高浓度下操作的能力,从而使资本成本最小化。发明内容本申请的创新和要求保护的方面是发现以下缺点:上述用过的钯羰基化分散催化剂的催化活性可以通过用基本上无水的有机过氧化物处理来恢复。在下文描述的实施例1中例示了使用后者(可替代地称为氢过氧化物)试剂。这里的辛烯然后,通过所述方法将乙醇混合物羰基化,通过蒸馏回收壬酸乙酯,并在五个循环后,如下再生固体催化剂:[P]

1.将回收的催化剂用有机过氧化物试剂处理,优选用有机过氧化物试剂处理。在惰性气体存在下,将混合物在惰性气氛下加热。P 2。通过减压蒸馏除去过量的液体。P 3。在过氧化物处理后,以每摩尔Pd 1-10摩尔配体的摩尔比,将另外的稳定配体,例如三苯基膦,加入到冷却的熔融催化剂中。然后,再生的催化剂准备好与新鲜的烯烃/醇进料一起再循环到羰基化反应器中。通常,可以使用多种过氧化物和氢过氧化物试剂来再生所述钯羰基化催化剂。合适的氢过氧化物试剂包括叔丁基氢过氧化物,异丙苯氢过氧化物,对薄荷烷氢过氧化物和2,5-二甲基己基-2,5-二氢过氧化物。合适的过氧化物试剂包括过氧化丙氨酰,过氧化月桂酰,过氧化乙酰基,过氧化苯甲酰,对氯苯甲酰过氧化物,过氧化二枯基,过氧化二叔丁基,过乙酸叔丁酯,过苯甲酸叔丁酯和过氧化甲乙酮。为了获得令人满意的再生,应该将至少化学计量的过氧化物试剂加入到废钯催化剂中,即每克催化剂中存在的钯原子至少有1摩尔过氧化物试剂。优选地,应该使用过量的过氧化物试剂,每克原子的钯使用1至10至4摩尔过氧化物试剂。当处理过的催化剂样品对所需的线性脂肪酸(羧酸)或酯的选择性为70%至95%,总酯的产率为20%至95%时,则判断发生了再生。可以将过氧化物或氢过氧化物再生试剂纯净地添加到废催化剂中,但是优选地,它们在干燥的惰性溶剂的存在下以稀释形式添加。合适的惰性溶剂包括:链烷烃溶剂,例如石油醚,庚烷,己烷和正辛烷等;酮,例如甲基异丁基酮,丙酮和甲基乙基酮;氯化溶剂,例如邻二氯苯,二氯甲烷和氯萘。诸如二甲基砜之类的砜,诸如苯,甲苯和二甲苯之类的芳族化合物及其混合物。

用于稀释有机过氧化物或氢过氧化物试剂的溶剂的质量对于体积而言并不关键,为方便起见,约为0.1相对于过氧化物试剂的每体积份,可以使用10份至10份体积的惰性溶剂。同样,再生的时间和温度不是初始的,并且根据要再生的钯催化剂的选择和过氧化物试剂的选择,可以采用20℃至150℃的温度0.01至48小时。

催化剂再生通常在惰性气氛下进行。这可以是氮气,氦气,氩气,氖气,二氧化碳或其混合物,或者可以在真空中进行再生。在下文的实施例1中举例说明了用过氧化物试剂对钯羰基化催化剂的再生。熔体(C.sub.2 H.sub.5).sub.4 N! SnCl.sub.3!-PdCl.sub.2 P(C.sub.6 H.sub.5).sub。 3!.sub.2。 (C.sub.2 H.sub.5).sub.4 N!以外的其他钯羰基化催化剂SnCl 3 -PdCl 2 P(C 6 H 5)3 2也可以通过该技术生成。这些催化剂通常由配体稳定的卤化钯(II)配合物分散在三卤锡酸(II)和三卤代高铁酸盐(II)的季铵盐,phospho盐和son盐中。它们举例说明但不限于实施例8至14中所述的羰基化催化剂。除1-辛烯以外,实施例1中使用的乙醇以外的其他底物混合物也可以通过再生的钯羰基化催化剂进行羰基化。在下文描述的实施例15至20中给出了一些典型的实施例。通常,如式1所示,对于α-烯烃的羰基化,R 1和R 2可以分别为氢,至多12个碳原子的烷基,至多12个碳原子的烯基或最多12个碳原子的芳基,或混合的烷基芳基或芳基烷基。合适的链烷醇(ROH)包括1至12个碳原子的伯和仲醇,酚,取代的醇和多元醇。羰基化反应的主要产物是脂肪(羧酸)及其酯。

著录项

  • 公开/公告号US4048093A

    专利类型

  • 公开/公告日1977-09-13

    原文格式PDF

  • 申请/专利权人 TEXACO INC.;

    申请/专利号US19750635995

  • 发明设计人 JOHN F. KNIFTON;

    申请日1975-11-28

  • 分类号B01J31/40;B01J27/32;C07C51/00;C11C3/02;

  • 国家 US

  • 入库时间 2022-08-22 23:29:16

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号