首页> 外国专利> METHOD FOR POWER GENERATION, COMBINED GAS TURBINE POWER SYSTEM THEREFOR, GAS TURBINE AND METHOD FOR ADAPTING GAS TURBINES TO OPERATION USING CATALYTIC PARTIAL FUEL OXIDATION

METHOD FOR POWER GENERATION, COMBINED GAS TURBINE POWER SYSTEM THEREFOR, GAS TURBINE AND METHOD FOR ADAPTING GAS TURBINES TO OPERATION USING CATALYTIC PARTIAL FUEL OXIDATION

机译:发电方法,组合燃气轮机动力系统,燃气轮机以及利用催化部分燃料氧化使燃气轮机运行的方法

摘要

1. A process for generating energy according to which gas is fed into a catalytic reactor (107) in which the gas is subjected to a reaction of partial oxidation in the presence of gas, comprising oxygen and steam, and oxidized gas effluent from the catalytic reactor drives a power turbine, characterized in that the reaction of the partial oxidation is carried out in the presence of the gas, comprising oxygen in a hypostoichiometric amount and the steam in the presence of a predetermined amount of hydrogen as an agent, initiating said reaction. 2. A process of claim 1, characterized in that the hydrogen is added in an amount, determined by three molar ratios, defined by the following expressions: R1=O2/C; R2=H2O/C; R3=H2/C in which molar ratios have predetermined values, selected in intervals 0,55-0,75; 0,8-1,4 and 0,03-0,15 accordingly. 3. A process of claim 2, characterized in that the molar ratio according to expression H2O/C downstream said reactor (107) is selected in an interval 1,5-2, preferably close to 2. 4. A process of claim 2 or 3, characterized in that the hydrogen is supplied from the system by a recycling part of the effluent from the reactor (107) and the combustible mixture is preliminary mixed with steam. 5. A process of claims 2, 3 or 4, characterized in that the hydrogen is supplied from a combination of said gas turbine of the partial oxidation and the reactor (107), which provides indirect heat exchange with the effluent gases (109) of the power turbine (104). 6. A process of any preceding claim, characterized in that the reaction of the partial oxidation is carried out in the presence of multi-layer catalytic mass, comprising at least a first inactive layer and a second active layer. 7. A process of claim 6, characterized in that the active layer consists of sub-layers, comprising materials of different nature and/or different and/or different concentration. 8. A process of claim 6, characterized in that the active layer is arranged on a support from heat-proof material. 9. A process of any preceding claim, characterized in that the substances being used in the reaction are preliminary heated to a temperature between 400 degree C and 500 degree C. 10. A system for generating energy of any preceding claim, comprising a gas compressor (101), a catalytic reactor (107) for production of high-temperature combustible gas by the partial oxidation of gaseous fuel, using gas, compressed in said gas compressor, in the presence of steam and an expansion turbine driven by said combustible gas, characterized in that said catalytic reactor comprises multi-layer catalytic mass (170), comprising at least one inactive (171) and one active (170) layers. 11. The system of claim 10, characterized in that the active layer consists of sub-layers, comprising materials of different nature and/or different and/or different concentration. 12. The system of claim 10 or 11, characterized in that a catalytic coating is applied on the blades of the expansion turbine (103). 13. The system of claim 10 or 11, characterized in that said catalyst is provided with a support (175). 14. The system of claim 13, characterized in that said support has a cellular structure. 15. The system of claim 13 or 14, characterized in that said catalyst comprises active materials, consisting of platinum and zirconium oxide, assisting the reaction, including the partial oxidation of the combustible fuel by steam, and air or gases ejecting from the high-pressure gas turbine, adjacent to said partial oxidation reactor. 16. The system of claim 13 or 14, characterized in that said catalyst comprises an active material, which is nickel on the support from activated alumina. 17. The system of claim 13 or 14, characterized in that said catalyst comprises an active material, which is an alloy of platinum and rhodium in the form of successive grills. 18. The system of claim 13 or 14, characterized in that heat-resisting metals are used as a material for the support. 19. The system of claim 18, characterized in that a nickel-chrome alloy is used as a heat-resisting material. 20. The system of claims 16 to 19, characterized in that said supports consists of a material with an addition of metal oxides. 21. The system of claim 16 or 17, characterized in that said support of the catalyst is made based on inorganic polymers with an active material, deposited on Pt-ZrO2. 22. The system of claim 21, characterized in that catalytic module consisting of a catalyst or catalysts (171, 172) and said support is substantially cylindrical and has a cellular structure. 23. The system of claims 10 to 22, characterized in that said reactor comprises a filter (8) upstream the catalyst. 24. The system of claim 23, characterized in that said filter is removable. 25. The system of claim 24, characterized in that comprises an ejecto-suppressors (106, 206, 306), provided in corresponding cases with a gas distributor in said inactive layer (171) with a fixed support, wherein the second layer (172) consists of the partial oxidation catalyst. 26. The system of claim 25, characterized in that said ejecto-suppressor mixer (106) is biconic. 27. The system of claim 26, characterized in that said partial oxidation reactor (107) is embedded into a gas turbine of an aviation type, suitable for carrying out the partial oxidation. 28. The system of claim 27, characterized in that said reactor (107) is substantially cylindrical, arranged horizontally and comprises metal grills, preferably made of platinum. 29. The system of claims 10 to 26, characterized in that said reactor (107) is substantially cylindrical, arranged horizontally and comprises a section of greater diameter, comprising a free partial oxidation catalyst, maintained by the grills. 30. The system of claims 10 to 24, characterized in that said reactor (207) is applied in an industrial gas turbine, in which said reactor (207) is substantially cylindrical and arranged along the periphery of the gas turbine. 31. The system of claim 30, characterized in that said reactor, adapted to the turbine, is designed in the form of a silo, on the top surface of which an ejecto-suppressor is mounted, and in the cylindrical silo a catalyst is housed. 32. The system of claim 31, characterized in that a perpendicular silo is cylindrical and provided with a burner (220) arranged over the layer of the partial oxidation catalysts. 33. The system of claims 10 to 26, characterized in that said partial oxidation reactor (307) is adapted to a specially designed gas turbines, operating under high-pressure conditions. 34. The system of claim 33, characterized in that said ejecto-suppressor has a radial form and comprises an annular injector of the combustible gas. 35. The system of claim 34, characterized in that said ejecto-suppressor in its longitudinal section is rounded in a narrowing zone. 36. The system of claims 25 to 34, characterized in that said ejecto-suppressor consists of the module, type Venturi tube, with a substantially radial profile of the peripheral surface and with feed via said toroidal injector (15). 37. The system of claims 10 to 36, characterized in that there is a reactor initiator at the inlet of said catalytic reactor (107, 207, 307). 38. The system of claim 37, characterized in that said initiator is hydrogen in a predetermined amount. 39. The system of claims 10 to 38, characterized in that comprises means for regulation of different flowing agents, namely air, fuel and steam, wherein said agents can register the temperature and pressure parameters in a real scale time and enable to adapt in a continuous mode to the thermodynamic characteristics of reactions of the partial oxidation and function in accordance of the reactor mathematical model, thus providing regulation of the different flowing agents under any operation conditions based on the modeling in a real scale time. 40. The system of claims 10 to 39, characterized in that comprises: an air compressor (310), having at least two stages (311, 312) with intermediate cooling (315) by reaction water (W) injection, wherein the compressor is designed to supply pressurized air (3-6 MPa), a partial oxidation catalytic reactor (307) designed to feed into it said air, steam and fuel to form combustible gas at a regulated high temperature, a turbine (303), adapted for providing expansion and burning the combustible gas, comprising: a stator and a rotor, the blades of which (131, 314) are designed with an inner cooling by injecting said air, inner ducts (340, 360) and outer ducts (380) supplying the cooling air from said air compressor to the blades of said stator and rotor accordingly with further feeding the cooling air into the turbine (303) to form combustible gas for burning in a regime close to isometric. 41. A process for adapting gas turbines of the aviation type, in particular in the system of claim 27, characterized in that comprises the partial oxidation reactor (107) followed downstream the high-pressure turbine (103), said reactor (107) comprises the ejecto-suppressor (106) and the catalyst (170), to which pressurized gas fuel is fed, gas from the turbine (103), arranged upstream said reactor, and the steam thus forming combustible gas, which is fed into the power turbine (104), wherein the effluent gas from high-temperature power turbine serves for burning at a secondary thermal utilization. 42. A process for adapting industrial gas turbines of any type for the operation in the regime of the partial oxidation, characterized in that a partial oxidation reactor (207) is used instead of combustion chambers, wherein the reactor comprises the ejecto-suppressor (206) and a catalyst (270), to which pressurized steam and fuel are fed, as well as air from the compressor (201). 43. A process of claim 41, characterized in that the active gas from the reactor (107) is fed into the expansion turbine, which generates power needed to drive
机译:1.一种产生能量的方法,根据该方法,将气体进料到催化反应器(107)中,在该反应器中,使该气体在包含氧气和蒸汽的气体以及来自催化器的氧化的废气中进行部分氧化的反应。反应器驱动动力涡轮机,其特征在于,部分氧化反应在存在气体的条件下进行,该气体包括化学计量比的氧气和在预定量的氢作为试剂的条件下的蒸汽,从而引发所述反应。 。 2.根据权利要求1的方法,其特征在于,氢气的加入量由三个摩尔比确定,该摩尔比由以下表达式定义:R1 = O2 / C;和R 2 = H 2 O / C; R 3 = H 2 / C,其中摩尔比具有预定的值,其在0.55-0.75的间隔中选择; 0,8-1,4和0,03-0,15。 3.根据权利要求2所述的方法,其特征在于,在所述反应器(107)下游根据式H 2 O / C的摩尔比在1.5-2的间隔内选择,优选接近2。4.权利要求2或3的方法。参照图3,其特征在于,氢气是通过来自反应器(107)的流出物的再循环部分从系统供应的,并且可燃混合物与蒸汽预先混合。 5.根据权利要求2、3或4所述的方法,其特征在于,由所述部分氧化的燃气轮机和反应器(107)的组合提供氢气,所述反应器与所述反应器的流出气体(109)进行间接热交换。动力涡轮机(104)。 6.根据前述权利要求中任一项所述的方法,其特征在于,所述部分氧化的反应在多层催化物质的存在下进行,所述多层催化物质包括至少第一惰性层和第二活性层。 7.根据权利要求6所述的方法,其特征在于,所述有源层由子层组成,所述子层包括具有不同性质和/或不同和/或不同浓度的材料。 8.根据权利要求6所述的方法,其特征在于,所述活性层由耐热材料布置在支撑体上。 9.根据前述权利要求中任一项所述的方法,其特征在于,将在所述反应中使用的物质预先加热至400℃至500℃之间的温度。10.根据前述权利要求中任一项所述的用于产生能量的系统,包括气体压缩机(101),催化反应器(107),其用于在气体和由所述可燃气体驱动的膨胀涡轮的存在下,使用在所述气体压缩机中压缩的气体,通过气态燃料的部分氧化来生产高温可燃气体,其特征在于,所述催化反应器包括多层催化物质(170),该多层催化物质包括至少一层惰性层(171)和一层活性层(170)。 11.根据权利要求10所述的系统,其特征在于,所述有源层由子层组成,所述子层包括具有不同性质和/或不同和/或不同浓度的材料。 12.根据权利要求10或11所述的系统,其特征在于,在所述膨胀涡轮机(103)的叶片上施加催化涂层。 13.根据权利要求10或11所述的系统,其特征在于,所述催化剂设置有载体(175)。 14.根据权利要求13所述的系统,其特征在于,所述支撑件具有蜂窝结构。 15.根据权利要求13或14所述的系统,其特征在于,所述催化剂包括由铂和氧化锆组成的活性材料,所述活性材料辅助反应,包括可燃燃料被蒸汽以及从高沸点燃料喷射出的空气或气体部分氧化。高压燃气轮机,邻近所述部分氧化反应器。 16.根据权利要求13或14所述的系统,其特征在于,所述催化剂包括活性材料,所述活性材料是由活性氧化铝在所述载体上的镍。 17.根据权利要求13或14所述的系统,其特征在于,所述催化剂包括活性材料,所述活性材料是连续格栅形式的铂和铑的合金。 18.根据权利要求13或14所述的系统,其特征在于,将耐热金属用作支撑体的材料。 19.根据权利要求18所述的系统,其特征在于,镍铬合金被用作耐热材料。 20.根据权利要求16至19所述的系统,其特征在于,所述支撑件由添加有金属氧化物的材料组成。 21.根据权利要求16或17所述的系统,其特征在于,所述催化剂的载体基于沉积在Pt-ZrO 2上的具有活性材料的无机聚合物制成。 22.根据权利要求21所述的系统,其特征在于,由一种或多种催化剂(171、172)和所述载体组成的催化模块是基本上圆柱形的并且具有孔结构。 23.根据权利要求10至22所述的系统,其特征在于,所述反应器包括在催化剂上游的过滤器(8)。 24.根据权利要求23所述的系统,其特征在于,所述过滤器是可移除的。 25.根据权利要求24所述的系统,其特征在于,包括喷射抑制器(106、206、306)在相应的情况下,在具有惰性载体的所述惰性层(171)中设有气体分配器,其中第二层(172)由部分氧化催化剂组成。 26.根据权利要求25所述的系统,其特征在于,所述喷射抑制混合器(106)是双锥形的。 27.根据权利要求26所述的系统,其特征在于,所述部分氧化反应器(107)被嵌入航空类型的燃气轮机中,适于进行部分氧化。 28.根据权利要求27所述的系统,其特征在于,所述反应器(107)是基本上圆柱形的,水平布置的并且包括金属格栅,所述金属格栅优选地由铂制成。 29.根据权利要求10至26所述的系统,其特征在于,所述反应器(107)是基本上圆柱形的,水平布置,并且包括较大直径的部分,所述部分包括由格栅保持的自由的部分氧化催化剂。 30.根据权利要求10至24所述的系统,其特征在于,所述反应器(207)被应用于工业燃气轮机中,其中所述反应器(207)是大致圆柱形的并且沿着所述燃气轮机的外围布置。 31.根据权利要求30所述的系统,其特征在于,所述适合于涡轮机的反应器以筒仓的形式设计,在筒仓的顶面上安装有喷射抑制器,并且在圆柱形筒仓中容纳催化剂。 。 32.根据权利要求31所述的系统,其特征在于,垂直的筒仓是圆柱形的,并且设有布置在所述部分氧化催化剂的所述层上方的燃烧器(220)。 33.根据权利要求10至26所述的系统,其特征在于,所述部分氧化反应器(307)适合于在高压条件下运行的专门设计的燃气轮机。 34.根据权利要求33所述的系统,其特征在于,所述喷射抑制器具有径向形式并且包括可燃气体的环形喷射器。 35.根据权利要求34所述的系统,其特征在于,所述喷射抑制器在其纵向截面中在变窄区域中被倒圆。 36.根据权利要求25至34所述的系统,其特征在于,所述喷射抑制器由文丘里管类型的模块组成,所述模块具有外围表面的大致径向轮廓并且经由所述环形喷射器(15)进料。 37.根据权利要求10至36所述的系统,其特征在于,在所述催化反应器(107、207、307)的入口处存在反应器引发器。 38.根据权利要求37所述的系统,其特征在于,所述引发剂是预定量的氢。 39.根据权利要求10至38所述的系统,其特征在于,包括用于调节不同的流动介质即空气,燃料和蒸汽的装置,其中,所述流动介质可以实时记录温度和压力参数,并能够适应连续模式可以根据反应器数学模型对部分氧化反应的热力学特性和功能进行连续调节,从而基于实时建模在任何操作条件下提供不同流动剂的调节。 40.根据权利要求10至39所述的系统,其特征在于,包括:空气压缩机(310),具有至少两级(311、312),所述至少两级(311、312)通过注入反应水(W)进行中间冷却(315),其中所述压缩机是设计用于供应加压空气(3-6 MPa)的局部氧化催化反应器(307),用于将所述空气,蒸汽和燃料供入其中,以在调节的高温下形成可燃气体;涡轮(303),用于提供膨胀和燃烧可燃气体,包括:定子和转子,其叶片(131、314)设计成通过注入所述空气进行内部冷却,内部管道(340、360)和外部管道(380)为燃烧室供气。从所述空气压缩机到所述定子和转子的叶片的冷却空气相应地,同时将冷却空气进一步供给到涡轮机(303)中以形成可燃气体以在接近等距的状态下燃烧。 41.一种特别是在权利要求27的系统中用于适配航空类型的燃气轮机的方法,其特征在于,包括部分氧化反应器(107),其后是高压涡轮(103)的下游,所述反应器(107)包括向其供给加压气体燃料的喷射抑制器(106)和催化剂(170),布置在所述反应器上游的来自涡轮机(103)的气体和由此形成可燃气体的蒸汽被供给至动力涡轮机(104),其中来自高温动力涡轮机的废气用于二次热利用的燃烧。 42.一种用于使任何类型的工业燃气轮机适应于部分氧化的操作的方法,其特征在于,使用部分氧化反应器(207)代替燃烧室,其中所述反应器包括喷射抑制器(206)。 )和催化剂(270),加压的蒸汽和燃料以及来自压缩机(201)的空气被供给到该催化剂。 43.权利要求41的方法,其特征在于,来自反应堆(107)的活性气体被送入膨胀涡轮,膨胀涡轮产生驱动所需的动力。

著录项

  • 公开/公告号EA001417B1

    专利类型

  • 公开/公告日2001-02-26

    原文格式PDF

  • 申请/专利权人 OXIPAR;

    申请/专利号EA19980000392

  • 发明设计人 KALITVENTZEFF BORIS;RIBESSE JCQUES;

    申请日1996-10-21

  • 分类号F23R3/40;F01K21/04;

  • 国家 EA

  • 入库时间 2022-08-22 01:25:36

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号