首页> 外国专利> LIGHT-INDUCED CAPACITANCE SPECTROSCOPY AND METHOD FOR OBTAINING CARRIER LIFETIME WITH MICRON/NANOMETER SCALE

LIGHT-INDUCED CAPACITANCE SPECTROSCOPY AND METHOD FOR OBTAINING CARRIER LIFETIME WITH MICRON/NANOMETER SCALE

机译:微米/纳米尺度的载流子寿命的光诱导电容光谱和方法

摘要

Measurement of capacitance and derivative capacitance (dC/dV) on a semiconductor structure under light-pumped condition is documented to measure carrier lifetime with a spatial resolution limited by physical law, depending on material properties (10 nm 100µm). An atomic force microscope or probe-station is used to position a nanometer scale tip over the surface of a semiconductor material to be probed, which is also illuminated with a controlled light source for carrier generation. The capacitance-voltage (C-V) curves or dC/dV versus voltage curves between the tip and the semiconductor are measured under these illuminating conditions with a sensitive capacitance sensor. The unique method for transient spectroscopy incorporates a unique control system and procedure in which capacitance or dC/dV signal are measured as a function of time synchronized to changing the illuminating condition. The capacitance transient can be measured at any dc voltage, but particularly useful information such as carrier density is obtained if the probe is biased at the semiconductor flatband voltage. A simple, one-dimensional model is used to determine, from the measurement of C-V or dC/dV curves, capacitance transients, and frequency-dependent capacitance variance, the carrier recombination rate, and carrier generation and recombination lifetimes in the semiconductor with a microscopic spatial resolution: The limitation of spatial resolution of this measurement is by physical law not by instrumentation. The invention encompasses several methods of acquiring the carrier lifetime on time scales of microseconds and longer with a highly localized probe which are unique with respect to previous practices. The method can easily be incorporated into various commercial instruments such as atomic force microscope, surface profiler, and probe station.
机译:据记录,在光泵浦条件下,对半导体结构上的电容和微分电容(dC / dV)进行测量,以测量载流子寿命,其空间分辨率受物理法则的限制,具体取决于材料特性(10 nm 100µm)。使用原子力显微镜或探针台将纳米标度的尖端定位在要探测的半导体材料的表面上,该尖端也用受控光源进行照明以产生载流子。在这些照明条件下,使用灵敏的电容传感器测量尖端与半导体之间的电容-电压(C-V)曲线或dC / dV与电压的关系曲线。瞬态光谱学的独特方法结合了独特的控制系统和程序,其中电容或dC / dV信号根据与照明条件变化同步的时间进行测量。可以在任何直流电压下测量电容瞬变,但是如果将探头偏置在半导体平带电压上,则会获得特别有用的信息,例如载流子密度。一个简单的一维模型用于通过CV或dC / dV曲线的测量,电容瞬变和与频率相关的电容方差,载流子复合率以及载流子的产生和复合寿命,用显微镜来确定空间分辨率:此测量的空间分辨率的局限性是通过物理定律而不是通过仪器进行的。本发明包括几种方法,这些方法利用高度定位的探针在微秒或更长时间的时间尺度上获得载流子寿命,这是以前的实践所独有的。该方法可以轻松地合并到各种商业仪器中,例如原子力显微镜,表面轮廓仪和探针台。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号