C(s)=Kp(1+Ki1sα) ]]>includes deriving values for Kp, Ki, and α that satisfy a flat phase condition represented by <math overflow="scroll"><mrow><mi>∠</mi><mo>⁢</mo><mfrac><mrow><mo>ⅆ</mo><mrow><mi>G</mi><mo>⁡</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></mrow><mrow><mo>ⅆ</mo><mi>s</mi></mrow></mfrac><mo>⁢</mo><mrow><msub><mrow><msub><mo></mo><mrow><mi>s</mi><mo>=</mo><msub><mi>jw</mi><mi>c</mi></msub></mrow></msub><mo>⁢</mo><mrow><mo>=</mo><mrow><mi>∠</mi><mo>⁢</mo><mstyle><mtext> </mtext></mstyle><mo>⁢</mo><mrow><mi>G</mi><mo>⁡</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></mrow></mrow><mo></mo></mrow><mrow><mi>s</mi><mo>=</mo><msub><mi>jw</mi><mi>c</mi></msub></mrow></msub><mo>.</mo></mrow></mrow></math> Kp is derived to ensure that a sensitivity circle tangentially touches a Nyquist curve on a flat phase. Ki and α are derived to ensure that a slope of a Nyquist curve is approximately equal to the phase of an open loop system at a given frequency. A method for tuning a PI controller <math overflow="scroll"><mrow><mrow><mi>C</mi><mo>⁡</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow><mo>=</mo><mrow><msub><mi>K</mi><mi>p</mi></msub><mo>⁡</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mrow><msub><mi>K</mi><mi>i</mi></msub><mo>⁢</mo><mfrac><mn>1</mn><msup><mi>s</mi><mi>α</mi></msup></mfrac></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math> where the gain crossover frequency wc is known includes obtaining measurements of ∠P(jwc) and |P(jwc)| of an unknown, stable real plant P(s) using iterative relay feedback tests, and approximating the derivative of the plant phase, ∠P(jwc), provided by the relationship <math overflow="scroll"><mrow><mrow><mrow><msub><mi>s</mi><mi>p</mi></msub><mo>⁡</mo><mrow><mo>(</mo><msub><mi>w</mi><mi>c</mi></msub><mo>)</mo></mrow></mrow><mo>=</mo><mrow><mrow><msub><mi>w</mi><mi>c</mi></msub><mo>⁢</mo><mfrac><mrow><mrow><mo>ⅆ</mo><mi>∠</mi></mrow><mo>⁢</mo><mstyle><mtext> </mtext></mstyle><mo>⁢</mo><mrow><mi>P</mi><mo>⁡</mo><mrow><mo>(</mo><mi>jw</mi><mo>)</mo></mrow></mrow></mrow><mrow><mo>ⅆ</mo><mi>w</mi></mrow></mfrac></mrow><mo>⁢</mo><msub><mo>❘</mo><msub><mi>w</mi><mi>c</mi></msub></msub><mo>⁢</mo><mrow><mo>≈</mo><mrow><mrow><mi>∠</mi><mo>⁢</mo><mstyle><mtext> </mtext></mstyle><mo>⁢</mo><mrow><mi>P</mi><mo>⁡</mo><mrow><mo>(</mo><msub><mi>jw</mi><mi>c</mi></msub><mo>)</mo></mrow></mrow></mrow><mo>+</mo><mrow><mfrac><mn>2</mn><mi>π</mi></mfrac><mo>⁡</mo><mrow><mo>[</mo><mrow><mrow><mi>ln</mi><mo>⁢</mo><mrow><mo></mo><msub><mi>K</mi><mi>g</mi></msub><mo></mo></mrow></mrow><mo>-</mo><mrow><mi>ln</mi><mo>⁢</mo><mrow><mo></mo><mrow><mi>P</mi><mo>⁡</mo><mrow><mo>(</mo><msub><mi>jw</mi><mi>c</mi></msub><mo>)</mo></mrow></mrow><mo></mo></mrow></mrow></mrow><mo>]</mo></mrow></mrow></mrow></mrow></mrow></mrow><mo>,</mo></mrow></math> wherein |Kg|=P(0) is the static gain of the real plant P(s)."/> Tuning methods for fractional-order controllers
首页> 外国专利> Tuning methods for fractional-order controllers

Tuning methods for fractional-order controllers

机译:分数阶控制器的调整方法

摘要

A method for tuning a fractional-order proportional-integral (PI) controller <math overflow="scroll"><mrow><mrow><mi>C</mi><mo>⁡</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow><mo>=</mo><mrow><msub><mi>K</mi><mi>p</mi></msub><mo>⁡</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mrow><msub><mi>K</mi><mi>i</mi></msub><mo>⁢</mo><mfrac><mn>1</mn><msup><mi>s</mi><mi>α</mi></msup></mfrac></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math> includes deriving values for Kp, Ki, and α that satisfy a flat phase condition represented by <math overflow="scroll"><mrow><mi>∠</mi><mo>⁢</mo><mfrac><mrow><mo>ⅆ</mo><mrow><mi>G</mi><mo>⁡</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></mrow><mrow><mo>ⅆ</mo><mi>s</mi></mrow></mfrac><mo>⁢</mo><mrow><msub><mrow><msub><mo></mo><mrow><mi>s</mi><mo>=</mo><msub><mi>jw</mi><mi>c</mi></msub></mrow></msub><mo>⁢</mo><mrow><mo>=</mo><mrow><mi>∠</mi><mo>⁢</mo><mstyle><mtext> </mtext></mstyle><mo>⁢</mo><mrow><mi>G</mi><mo>⁡</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></mrow></mrow><mo></mo></mrow><mrow><mi>s</mi><mo>=</mo><msub><mi>jw</mi><mi>c</mi></msub></mrow></msub><mo>.</mo></mrow></mrow></math> Kp is derived to ensure that a sensitivity circle tangentially touches a Nyquist curve on a flat phase. Ki and α are derived to ensure that a slope of a Nyquist curve is approximately equal to the phase of an open loop system at a given frequency. A method for tuning a PI controller <math overflow="scroll"><mrow><mrow><mi>C</mi><mo>⁡</mo><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow><mo>=</mo><mrow><msub><mi>K</mi><mi>p</mi></msub><mo>⁡</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>+</mo><mrow><msub><mi>K</mi><mi>i</mi></msub><mo>⁢</mo><mfrac><mn>1</mn><msup><mi>s</mi><mi>α</mi></msup></mfrac></mrow></mrow><mo>)</mo></mrow></mrow></mrow></math> where the gain crossover frequency wc is known includes obtaining measurements of ∠P(jwc) and |P(jwc)| of an unknown, stable real plant P(s) using iterative relay feedback tests, and approximating the derivative of the plant phase, ∠P(jwc), provided by the relationship <math overflow="scroll"><mrow><mrow><mrow><msub><mi>s</mi><mi>p</mi></msub><mo>⁡</mo><mrow><mo>(</mo><msub><mi>w</mi><mi>c</mi></msub><mo>)</mo></mrow></mrow><mo>=</mo><mrow><mrow><msub><mi>w</mi><mi>c</mi></msub><mo>⁢</mo><mfrac><mrow><mrow><mo>ⅆ</mo><mi>∠</mi></mrow><mo>⁢</mo><mstyle><mtext> </mtext></mstyle><mo>⁢</mo><mrow><mi>P</mi><mo>⁡</mo><mrow><mo>(</mo><mi>jw</mi><mo>)</mo></mrow></mrow></mrow><mrow><mo>ⅆ</mo><mi>w</mi></mrow></mfrac></mrow><mo>⁢</mo><msub><mo>❘</mo><msub><mi>w</mi><mi>c</mi></msub></msub><mo>⁢</mo><mrow><mo>≈</mo><mrow><mrow><mi>∠</mi><mo>⁢</mo><mstyle><mtext> </mtext></mstyle><mo>⁢</mo><mrow><mi>P</mi><mo>⁡</mo><mrow><mo>(</mo><msub><mi>jw</mi><mi>c</mi></msub><mo>)</mo></mrow></mrow></mrow><mo>+</mo><mrow><mfrac><mn>2</mn><mi>π</mi></mfrac><mo>⁡</mo><mrow><mo>[</mo><mrow><mrow><mi>ln</mi><mo>⁢</mo><mrow><mo></mo><msub><mi>K</mi><mi>g</mi></msub><mo></mo></mrow></mrow><mo>-</mo><mrow><mi>ln</mi><mo>⁢</mo><mrow><mo></mo><mrow><mi>P</mi><mo>⁡</mo><mrow><mo>(</mo><msub><mi>jw</mi><mi>c</mi></msub><mo>)</mo></mrow></mrow><mo></mo></mrow></mrow></mrow><mo>]</mo></mrow></mrow></mrow></mrow></mrow></mrow><mo>,</mo></mrow></math> wherein |Kg|=P(0) is the static gain of the real plant P(s).
机译:调整分数阶比例积分(PI)控制器的方法 <![CDATA [<数学溢出=“ scroll”> C s = < mi> K p 1 < mo> + K i 1 s α < / mrow> ]]> 包括K p ,K i 和α的推导值,这些值满足由以下表示的平坦相位条件 <![CDATA [<数学溢出=“ scroll”> G s < mo>) s s = jw c = G ⁡< / mo> s s = jw c ]]> 导出K p 可以确保灵敏度圆切线接触平坦相位上的Nyquist曲线。导出K i 和α以确保奈奎斯特曲线的斜率大约等于给定频率下开环系统的相位。一种调整PI控制器的方法 <![CDATA [<数学溢出=“ scroll”> C s = < mi> K p 1 < mo> + K i 1 s α < / mrow> ]]> 增益交叉频率w c 已知的地方包括获得∠P(jw c )和| P(jw c )|的测量值。使用迭代中继反馈测试对未知,稳定的真实植物P(s)进行估计,并近似计算出植物相位的导数∠P(jw c ),由关系式提供 <![CDATA [<数学溢出=“ scroll”> s p w c = w c P jw w < / mrow> w c < / msub> P jw c + 2 π [ < mrow> ln K g - ln < mo> P jw c ] ]]> 其中| K g | = P(0)是真实植物P(s)的静态增益。

著录项

  • 公开/公告号US2006265085A1

    专利类型

  • 公开/公告日2006-11-23

    原文格式PDF

  • 申请/专利权人 YANGQUAN CHEN;

    申请/专利号US20060435916

  • 发明设计人 YANGQUAN CHEN;

    申请日2006-05-17

  • 分类号G05B13/02;

  • 国家 US

  • 入库时间 2022-08-21 21:02:37

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号