首页> 中国专利> 一种基于专家S面控制的四旋翼无人机协同控制方法

一种基于专家S面控制的四旋翼无人机协同控制方法

摘要

本发明提供了一种基于专家S面控制的四旋翼无人机协同控制方法,机群中的中央平板和控制每架四旋翼的平板通过WiFi彼此在局域网间传递消息,PC机同时作为此局域网的服务器负责消息的登记和查询,通过计算得出四旋翼的控制指令并通过串口发送给底层的飞行控制系统,进而控制四旋翼完成编队任务。本发明将虚拟中心点的坐标值发送给各个四旋翼无人机就可实现系统编队,系统中某一架无人机的故障不会对机群中其他无人机造成干扰,将专家控制算法和S面控制算法有效的结合起来,可以有效的控制无人机执行任务,定位系统使用了RTK基站,更好的保证了控制精度。

著录项

  • 公开/公告号CN113126648B

    专利类型发明专利

  • 公开/公告日2022-07-05

    原文格式PDF

  • 申请/专利权人 西北工业大学;

    申请/专利号CN202110190552.3

  • 申请日2021-02-18

  • 分类号G05D1/10(2006.01);

  • 代理机构西安凯多思知识产权代理事务所(普通合伙) 61290;

  • 代理人刘新琼

  • 地址 710072 陕西省西安市友谊西路127号

  • 入库时间 2022-08-23 13:58:47

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-07-05

    授权

    发明专利权授予

说明书

技术领域

本发明涉及无人机协同控制技术研究领域,尤其是一种针对四旋翼无人机的控制方法。

背景技术

对于多无人机协同控制这样一个复杂的系统,无人机个体的简单组合并不能发挥其原本的优势,只有通过某种形式的组合才能实现其对复杂任务的处理。合理的结构将给无人机编队的协作功能提供支持,有助于作战任务的完成。故需要设计出良好的多无人机协同控制体系结构,实现无人机巡航编队和协同跟踪的飞行控制,完成协同作战任务。

多无人机系统的体系结构大概分为集中式和分布式。集中式结构的灵活性、容错性和适应性差,以及大规模的全局寻优问题难以解决,同时受到通信带宽的瓶颈限制;分布式结构在不确定的环境中遇到突发事件时,无人机个体间很难建立良好的协作关系,难以充分发挥群体的优势。

例如,申请号为CN201911213775.6的中国专利提出了提供了一种分布式的集群无人机队形变换方法,其中各架无人机独立地进行任务选择,进行任务包的构建与更新;任务包更新完成后,各架无人机同时向通信邻域内的其他无人机共享自己的已知信息并进行一致性协商,在此期间需要强大的网络带宽支持,若中间过程出现通信故障的问题,无人机编队系统将会崩溃。

申请号为CN202010367253.8的中国专利提供一种基于ADRC控制的多无人机协同控制系统及其方法,综合运用Gazebo仿真平台下无人机模型搭建、双无人机协同控制仿真、ADRC控制等理论和方法,但是该系统模块比较多,系统比较复杂,计算量比较大,对CPU性能要求比较大,且该系统只停留在仿真阶段,没能在实践中测试。

发明内容

为了克服现有技术的不足,本发明提供一种基于专家S面控制的四旋翼无人机协同控制方法。本发明可解决现有技术的缺点,搭建四旋翼无人机编队系统架构,在局域网中用软件对无人机进行控制是本发明重点。

本发明解决其技术问题所采用的技术方案包括以下步骤:

1)建立四旋翼无人机的运动学和动力学模型;

四旋翼无人机的运动学和动力学模型为:

其中,(x,y,z,φ,θ,ψ)为四旋翼无人机的六个自由度,

2)利用专家S平面控制算法计算各个通道控制量u;

四旋翼无人机各个通道控制量为:

如图1所示为四旋翼无人机控制流程图,其中非线性约束条件是:

U

3)搭建四旋翼无人机编队系统;

四旋翼无人机编队系统由一台PC机连接大功率路由器实现局域网搭建,机群中的中央平板和控制每架四旋翼的子平板通过WiFi彼此在局域网间传递消息,中央平板给分别控制每个无人机的子平板发送指令消息,即虚拟中心点的坐标值,然后每个子平板中含有坐标转换算法,将指令解析为四旋翼无人机的位置期望值;

4)输入四旋翼无人机的控制量u,完成四旋翼无人机的编队任务。

控制四旋翼无人机的子平板在接收到中央平板的指令后,将虚拟中心点的坐标值转换为基于机体坐标系的位置期望值,根据步骤2)的公式得到四旋翼无人机各个通道控制量,然后输入专家S面控制算法的控制量,每个无人机按照对应的控制量按图1的流程实现运动,跟踪上预定的的轨迹,实现四旋翼无人机编队运动。

步骤2)中S面控制器输入为:

其中,δ为消除不确定因素造成干扰的调整项,K为调整输出范围的增益,S面控制器输出的取值范围限制为[-K,K]。

所述步骤4)中,将虚拟中心点的坐标值转换为基于机体坐标系的位置期望值的步骤为:

以四架四旋翼无人机正方形队形的中心为原点建立O′-X′-Y′直角坐标系,q

其中,N为无人机的序号,d为无人机和虚拟中心点的距离。

本发明的有益效果在于:

(1)该控制系统不需要领航无人机,只需要将虚拟中心点的坐标值发送给各个四旋翼无人机就可实现系统编队;

(2)系统中某一架无人机的故障不会对机群中其他无人机造成干扰,也不会对系统造成干扰;

(3)将专家控制算法和S面控制算法有效的结合起来,可以有效的控制无人机执行任务;

(4)系统中的定位系统使用了RTK(Real-time kinematic)基站,更好的保证了控制精度。

附图说明

图1是本发明四旋翼无人机控制流程图。

图2是本发明专家S面控制器结构图。

图3是本发明通信系统结构示意图。

图4是本发明四旋翼编队拓扑模型框图。

具体实施方式

下面结合附图和实施例对本发明进一步说明。

本发明基于TCP/IP协议的局域网通信设计了的机群通信系统。具体而言,由一台PC机连接大功率路由器实现局域网搭建,机群中的中央平板和控制每架四旋翼的平板可以通过WiFi彼此在局域网间传递消息,PC机同时作为此局域网的服务器负责消息的登记和查询。

在整个系统中,中央平板和控制每架四旋翼无人机的平板通过WiFi在局域网内互相传递消息。控制每架四旋翼无人机的平板在接收到中央平板的指令后,通过计算得出四旋翼的控制指令并通过串口发送给底层的飞行控制系统,进而控制四旋翼完成编队任务。若系统需要增加编队成员的数量,只需要对控制四旋翼无人机的平板进行扩充,通信系统无需变动。

1)建立四旋翼无人机的运动学和动力学模型;

四旋翼无人机的空间运动分为两部分:质心平动和绕质心的转动。因此,描述任意时刻的空间运动只需要6个自由度:3和质心运动和3个角运动。在地面坐标系下应用牛顿第二定律可以建立四旋翼无人机在合外力F作用下的线运动方程和在合外力矩M作用下的角运动方程。

四旋翼无人机在合外力作用下的线运动方程为:

四旋翼无人机在合外力矩作用下的角速度方程为

式(2)中,m为飞行器的质量,

式中,

基于上述假设的基础上,在飞行过程中,飞行器只受到四个电机旋翼提供的升力f

由牛顿第二定律可知,四旋翼的线运动方程为:

结合动量矩定理得出:

此外,飞行器姿态角速度

当飞行器在空中做小角度飞行时,式(8)可近似认为:

综上所述,四旋翼无人机飞行器的角速度方程为:

由物理知识知:

其中:l为电机中心轴到飞行器质心的距离,K

做如下代换:令

整理四旋翼运动方程和角运动方程可得,四旋翼无人飞行器的数学模型为:

2)利用专家S平面控制算法计算控制量u;

Sigmoid函数是一个在生物学中常见的S型函数,也称为S型生长曲线,由公式(14)定义:

假设给定滚转通道的期望值φ

式中,k

利用S面控制器得到输入为:

式中,δ为消除不确定因素造成干扰的调整项,K为调整输出范围的增益;因为Sigmoid函数的值域为[0,1],所以S面控制器输出的取值范围限制为[-K,K]。

S面控制器可以有效控制四旋翼无人机的运动,但是单纯的S面控制器不具有学习功能,适应性差,所以本发明提出了S面控制算法结合专家控制,提高算法的控制精度和自适应能力。

专家系统是一种基于知识的系统,它主要面对的是各种非结构化的问题,尤其是处理定性的、启发式或不确定的知识信息,经过各种推理过程达到系统的任务目标。专家系统技术的特点为解决传统控制理论的局限性提供了重要的启示,二者的结合创造了专家控制这种新颖的控制系统设计和实现的方法。

专家控制的实质是使系统的构造和运行都基于控制对象和控制规律的各种专家知识,而且要以智能的方式来利用这些知识,求得受控系统尽可能的优化和实用化。专家控制的粗略定义为将专家系统的理论和技术同控制理论方法与技术相结合,在未知环境下,仿效专家的智能,实现对系统的控制。

本发明将在传统的专家控制思想引入传统的S面控制器中,设计了四旋翼无人机的专家S面控制器,来实现对无人机的有效控制。其中,专家S面控制器结构图如图2所示。

参数u调整规则:在S面控制器中,若k

表1参数调整规则

其中,λ

所以,滚转通道的控制量为:

给定俯仰通道期望的俯仰角控制变量为θ

给定偏航通道期望的偏航角控制变量为ψ

给定高度通道期望的俯仰角控制变量为z

给定水平通道期望水平X轴的控制变量为x

给定水平通道期望水平Y轴的控制变量为y

3)搭建四旋翼无人机编队系统;

如图3所示为四旋翼无人机编队通信系统结构示意图,由一台PC机连接大功率路由器实现局域网搭建,机群中的中央平板和控制每架四旋翼的子平板可以通过WiFi彼此在局域网间传递消息,PC机同时作为此局域网的服务器负责消息的登记和查询。

本发明使用RTK定位系统进行实时定位,使用GPS(全球定位系统)和BDS(北斗卫星导航系统)结合来进行有效的定位,使得定位精度达到了厘米级别,有效的保证了控制效果。

如图4所示为四旋翼编队拓扑模型框图,以D-RTK基站为原点建立O-X-Y直角坐标系,以四架四旋翼无人机正方形队形的中心为原点建立O′-X′-Y′直角坐标系,q

式中,N为无人机的序号,d为无人机和虚拟中心点的距离。

在局域网中,中央平板给分别控制每个无人机的平板发送指令消息,即虚拟中心点的坐标值,然后每个平板中含有坐标转换算法,将指令解析为四旋翼无人机的位置期望值。

4)输入四旋翼无人机的控制量u,完成四旋翼无人机的编队任务。

编队控制系统的软件实现是本发明的一个核心环节,利用Android studio将六个输入控制量(U

控制四旋翼无人机的平板在接收到中央平板的指令后,将其转换为基于机体坐标系的位置期望值,然后输入专家S面控制算法的控制量,实现四旋翼无人机编队运动。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号