首页> 中国专利> 一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料及其制备方法和应用

一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料及其制备方法和应用

摘要

本发明提出了一种增强碳量子点荧光的碳量子点/硫醇‑烯复合材料及其制备方法和应用,用以解决传统高分子碳量子点复合材料发光强度低、易发生荧光猝灭的技术问题。包括以下步骤:将碳量子点分散在机溶剂中,配置得到油相碳量子点;将光凝固剂、油相碳量子点和硫醇单体依次溶解在烯丙基单体中,制得混合溶液;混合溶液中的气泡排除,随后利用紫外光的照射来诱导凝固剂固化混合溶液,得碳量子点/硫醇‑烯复合材料。本发明还公布了碳量子点/硫醇‑烯复合材料在波长转换装置中的应用。本发明得到的固化物韧性好,透明度高,并且富有弹性。对比固化前后在405 nm~465 nm激发波长下的荧光强度,发现荧光强度增强了5~7倍。

著录项

  • 公开/公告号CN115109411A

    专利类型发明专利

  • 公开/公告日2022-09-27

    原文格式PDF

  • 申请/专利权人 郑州轻工业大学;

    申请/专利号CN202210774480.1

  • 申请日2022-07-01

  • 分类号C08L81/02(2006.01);C08K3/04(2006.01);C08G75/045(2016.01);C09K11/02(2006.01);C09K11/65(2006.01);B82Y20/00(2011.01);B82Y30/00(2011.01);

  • 代理机构郑州优盾知识产权代理有限公司 41125;

  • 代理人孙诗雨

  • 地址 450000 河南省郑州市高新技术产业开发区科学大道136号

  • 入库时间 2023-06-19 17:07:46

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-08-11

    授权

    发明专利权授予

  • 2022-10-18

    实质审查的生效 IPC(主分类):C08L81/02 专利申请号:2022107744801 申请日:20220701

    实质审查的生效

  • 2022-09-27

    公开

    发明专利申请公布

说明书

技术领域

本发明属于纳米材料发光的技术领域,尤其涉及一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料及其制备方法和应用。

背景技术

碳量子点(Carbon QuantumDots,CQDs)是一种尺寸在10nm以下的类球状碳颗粒,具有荧光性质的新型纳米碳材料,在生物成像、离子检测、电池储能、固态发光和柔性器件等领域应用广泛。而将具有优异光学和电学特性的碳量子点与高分子聚合物相结合(固化),并将其应用在光电器件中,是当前碳基领域的一个重要研究方向。常见的与碳量子点相结合的高分子聚合物材料有聚二甲基硅氧烷(PDMS)、聚对苯二甲酸乙二酯(PET)、聚酰亚胺(PI)、聚乙烯(PE)、橡胶和聚氨酯(PU)等材料。例如专利公布号CN113105676A将碳量子点以流体的形式通过混炼的方式加入到橡胶中,达到碳量子点均匀分散的效果,分散良好的碳量子点可赋予橡胶材料良好的耐热氧老化性能。但是,这些高分子聚合物在固化过程中需要较长的时间,且制备过程较为繁琐,在一些聚合物固化中往往需要高温高压等条件,破坏碳量子点的荧光性,这在一定程度上限制了碳量子点/高分子聚合物复合材料的应用。另外,由于ACQ效应(聚合诱导淬灭),使得碳量子点在固体状态下容易发生荧光淬灭,限制了碳量子点的研究和应用,而未经表面功能化的碳量子点发光强度通常很低,量子产率通常在10%以下,并且碳量子点在溶液中极易被空气中的氧气氧化,严重影响了碳量子点的发光效率和稳定性。

发明内容

针对传统高分子碳量子点复合材料发光强度低、易发生荧光猝灭的技术问题,本发明提出一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料及其制备方法和应用,所制备的碳量子点/硫醇-烯复合材料没有发生荧光猝灭并且其荧光强度明显增强。

为了达到上述目的,本发明的技术方案是这样实现的:

一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料的制备方法,包括以下步骤:

(1)将碳量子点分散在有机溶剂中,配置得到油相碳量子点;

(2)将光凝固剂、步骤(1)中的油相碳量子点和硫醇单体依次溶解在烯丙基单体中,制得混合溶液;

(3)将步骤(2)中混合溶液中的气泡排除,随后利用紫外光对混合溶液进行照射,在光凝固剂存在时,硫醇单体可以在紫外光下快速转化成硫自由基,并与烯丙基单体上的碳碳双键发生加成反应,固化后制得碳量子点/硫醇-烯复合材料。

所述步骤(1)中的有机溶剂为甲苯、丙酮或二甲基甲酰胺其中任意一种。

所述步骤(1)中油相碳量子点中碳量子点的浓度为5-20mg/mL。

优选的,所述步骤(1)中油相碳量子点中碳量子点的浓度为10mg/mL。

所述步骤(2)中油相碳量子点的添加量与烯丙基单体(Allyl monomers)和硫醇单体(Thiol monomers)之和的配比为50-200μL/g。

优选的,所述步骤(2)中油相碳量子点的添加量与Allyl monomers和Thiolmonomers之和的配比为100μL/g。

所述步骤(2)中光凝固剂为1-羟环己基苯酮;所述Allyl monomers为异氰脲酸三烯丙酯、油酸甲酯或乙酸甲酯其中任意一种;所述Thiol monomers为四(3-巯基丙酸)季戊四醇酯、4,4’-异丙基二环己烷双(3-巯基丙酸酯)或1,6-己烷双(3-巯基丙酸酯)其中任意一种。

优选的,所述步骤(2)中光凝固剂为1-羟环己基苯酮;所述烯丙基单体为异氰脲酸三烯丙酯;所述硫醇单体为四(3-巯基丙酸)季戊四醇酯。

所述步骤(2)中烯丙基单体和硫醇单体的质量比为(1-1.5):(1-1.5)。

优选的,所述步骤(2)中烯丙基单体和硫醇单体的质量比为1:1。

所述步骤(2)中光凝固剂的添加量为烯丙基单体和硫醇单体质量之和的0.5%-1%。

所述步骤(3)中紫外光的波长为350-390nm。

一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料。

上述碳量子点/硫醇-烯复合材料在波长转换装置中的应用,在波长转换中激发波的波长为405-465nm。并设计了一个以碳量子点/硫醇-烯复合材料为填充材料的混合槽型波导结构的波长转换器。该波长转换器通过槽型波导将激发光耦合到碳量子点/硫醇-烯复合材料中,当激发光为紫外光时,碳量子点/硫醇-烯复合材料能够将紫外光转换为中心波长位于蓝光波段的发光带。当激发光为蓝光时,碳量子点/硫醇-烯复合材料能够将其转换为中心波长位于绿光波段的发光带,从而实现了波长的转换功能。

本发明的有益效果:本发明通过两种单体加成交联实现了OSTE固化,在光凝固剂存在时,Thiol monomers可以在紫外光下快速转化成硫自由基,并与Allyl monomers上的碳碳双键发生加成反应。这一过程中形成的硫自由基也可以与碳量子点表面的悬挂键结合,从而将碳量子点交联到聚合物中,这一过程即通过Thiol monomers有效地钝化碳量子点表面的悬挂键,引入表面发光中心,提高荧光强度,也使得碳量子点可以有效的隔绝空气,提高碳量子点的发光稳定性。

本发明得到的固化物韧性好,透明度高,并且富有弹性。对比固化前后在405nm~465nm激发波长下的荧光强度,发现荧光强度增强了5~7倍,发射中心略微蓝移。在此基础上,对液体碳量子点溶液以及固化的CQDs/OSTE复合材料的荧光寿命进行测量,采用波长为405nm,脉宽为70皮秒、频率5MHZ的脉冲激光作为激发光,探测光为470nm。实验结果表明固化后碳量子点的平均荧光寿命变长,由4.42ns增加到6.09ns。这得益于Thiol单体中产生的自由基可以与碳量子点表面的悬挂键结合,对其进行了有效的钝化,使得碳量子点的非辐射跃迁得到抑制,增加了碳量子点内光生载流子的辐射复合几率,荧光寿命增大,因此使碳量子点的荧光强度得到提高。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为硫醇-烯固化过程的示意图,图(a)是Thiol monomers转化为活性自由基态(R-S*)的过程;图(b)是R-S*与CQDs表面的悬挂键交联的过程示意图。

图2为CQDs甲苯溶液及CQDs/OSTE复合材料(固化后)的荧光光谱。

图3为CQDs/OSTE溶液(固化前)的荧光光谱。

图4为405nm激发时CQDs甲苯溶液及CQDs/OSTE复合材料的荧光光谱和时间分辨荧光光谱图。图(a)中的黑线是CQDs甲苯溶液的荧光曲线,红线为CQDs/OSTE复合材料荧光曲线,图(b)中的黑线是CQDs甲苯溶液的时间分辨荧光衰减曲线,红线为CQDs/OSTE复合材料的时间分辨荧光衰减曲线。

图5为CQDs/OSTE复合材料的制备过程。

图6为基于CQDs/OSTE复合材料的波长转换装置;

图中:1、SiO

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料的制备方法,制备过程如图6所示,具体步骤如下:

(1)称量0.5g的Allyl monomers(triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione)(异氰脲酸三烯丙酯)、0.5g的Thiol monomers(Pentaerythritol tetrakis(3-mercaptopropionate))(四(3-巯基丙酸)季戊四醇酯)和0.005g的光凝固剂(1-羟环己基苯酮)。

(2)将光凝固剂放入体积为5mL的玻璃瓶中,然后将称量好的Allyl monomers(triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione)(异氰脲酸三烯丙酯)加入玻璃瓶中,放到震荡器上震荡,使得液体和光凝固剂混合均匀,时间为3min。将玻璃瓶放在加热器上进行加热,温度为70℃,使得光凝固剂融化,加热时间为3min,此后放到震荡器上震动3min,重复3次加热和震动。

(3)配置碳量子点浓度为10mg/mL的碳量子点甲苯溶液,将100μL碳量子点甲苯溶液放到上述溶液中随后加入称量好的Thiol monomers(Pentaerythritol tetrakis(3-mercaptopropionate))(四(3-巯基丙酸)季戊四醇酯)溶液,此后放到震荡器上震荡3min,随后超声5min,将其放置到真空环境下,直到汽包被完全排出,随后倒入矩形固化模具中。

(4)采用波长为360nm的紫外灯照射矩形固化模具,样品可以在10s内进行快速固化,固化过程产生大量化学热,制得CQDs/OSTE复合材料。其反应原理如图1所示,通过紫外光照射,可以将Thiol monomers于CQDs结合,从而将CQDs交联到硫醇烯聚合物中。

实施例2

一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料的制备方法,制备过程如图6所示,具体步骤如下:

(1)称量1g的Allyl monomers(triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione)(异氰脲酸三烯丙酯)、1.5g的Thiol monomers(Pentaerythritol tetrakis(3-mercaptopropionate))(四(3-巯基丙酸)季戊四醇酯)和0.025g的光凝固剂(1-羟环己基苯酮)。

(2)将光凝固剂放入体积为5mL的玻璃瓶中,然后将称量好的Allyl monomers(triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione)(异氰脲酸三烯丙酯)加入玻璃瓶中,放到震荡器上震荡,使得液体和光凝固剂混合均匀,时间为2min。将玻璃瓶放在加热器上进行加热,温度为80℃,使得光凝固剂融化,加热时间为4min,此后放到震荡器上震动1min,重复2次加热和震动。

(3)配置碳量子点浓度为20mg/mL的碳量子点甲苯溶液,将500μL碳量子点甲苯溶液放到上述溶液中随后加入称量好的Thiol monomers(Pentaerythritol tetrakis(3-mercaptopropionate))(四(3-巯基丙酸)季戊四醇酯)溶液,此后放到震荡器上震荡3min,随后超声10min,将其放置到真空环境下,直到汽包被完全排出,随后倒入矩形固化模具中。

(4)采用波长为360nm的紫外灯照射矩形固化模具,样品可以在10s内进行快速固化,固化过程产生大量化学热,制得CQDs/OSTE复合材料。其反应原理如图1所示,通过紫外光照射,可以将Thiol monomers于CQDs结合,从而将CQDs交联到硫醇烯聚合物中。

实施例3

一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料的制备方法,具体步骤如下:

(1)称量1.5g的Allyl monomers(triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione)(异氰脲酸三烯丙酯)、1g的Thiol monomers(Pentaerythritol tetrakis(3-mercaptopropionate))(四(3-巯基丙酸)季戊四醇酯)和0.02g的光凝固剂(1-羟环己基苯酮)。

(2)将光凝固剂放入体积为5mL的玻璃瓶中,然后将称量好的Allyl monomers(triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione)(异氰脲酸三烯丙酯)加入玻璃瓶中,放到震荡器上震荡,使得液体和光凝固剂混合均匀,时间为3min。将玻璃瓶放在加热器上进行加热,温度为70℃,使得光凝固剂融化,加热时间为3min,此后放到震荡器上震动3min,重复3次加热和震动。

(3)配置碳量子点浓度为5mg/mL的碳量子点甲苯溶液,将120μL碳量子点甲苯溶液放到上述溶液中随后加入称量好的Thiol monomers(Pentaerythritol tetrakis(3-mercaptopropionate))(四(3-巯基丙酸)季戊四醇酯)溶液,此后放到震荡器上震荡3min,随后超声5min,将其放置到真空环境下,直到汽包被完全排出,随后倒入矩形固化模具中。

(4)采用波长为350nm的紫外灯照射矩形固化模具,样品可以在10s内进行快速固化,固化过程产生大量化学热,制得CQDs/OSTE复合材料。其反应原理如图1所示,通过紫外光照射,可以将Thiol monomers于CQDs结合,从而将CQDs交联到硫醇烯聚合物中。

实施例4

一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料的制备方法,具体步骤如下:

(1)称量0.5g的Allyl monomers(油酸甲酯)、0.5g的Thiol monomers(4,4’-异丙基二环己烷双(3-巯基丙酸酯))和0.005g的光凝固剂(1-羟环己基苯酮)。

(2)将光凝固剂放入体积为5mL的玻璃瓶中,然后将称量好的油酸甲酯加入玻璃瓶中,放到震荡器上震荡,使得液体和光凝固剂混合均匀,时间为3min。将玻璃瓶放在加热器上进行加热,温度为70℃,使得光凝固剂融化,加热时间为3min,此后放到震荡器上震动3min,重复3次加热和震动。

(3)配置碳量子点浓度为10mg/mL的碳量子点丙酮溶液,将100μL碳量子点丙酮溶液放到上述溶液中随后加入称量好的4,4’-异丙基二环己烷双(3-巯基丙酸酯),此后放到震荡器上震荡3min,随后超声5min,将其放置到真空环境下,直到汽包被完全排出,随后倒入矩形固化模具中。

(4)采用波长为390nm的紫外灯照射矩形固化模具,样品可以在10s内进行快速固化,固化过程产生大量化学热,制得CQDs/OSTE复合材料。

实施例5

一种增强碳量子点荧光的碳量子点/硫醇-烯复合材料的制备方法,具体步骤如下:

(1)称量0.5g的Allyl monomers(乙酸甲酯)、0.5g的Thiol monomers(1,6-己烷双(3-巯基丙酸酯))和0.005g的光凝固剂(1-羟环己基苯酮)。

(2)将光凝固剂放入体积为5mL的玻璃瓶中,然后将称量好的乙酸甲酯加入玻璃瓶中,放到震荡器上震荡,使得液体和光凝固剂混合均匀,时间为3min。将玻璃瓶放在加热器上进行加热,温度为70℃,使得光凝固剂融化,加热时间为3min,此后放到震荡器上震动3min,重复3次加热和震动。

(3)配置碳量子点浓度为5mg/mL的碳量子点二甲基甲酰胺溶液,将100μL碳量子点二甲基甲酰胺溶液放到上述溶液中随后加入称量好的1,6-己烷双(3-巯基丙酸酯),此后放到震荡器上震荡3min,随后超声5min,将其放置到真空环境下,直到汽包被完全排出,随后倒入矩形固化模具中。

(4)采用波长为360nm的紫外灯照射矩形固化模具,样品可以在10s内进行快速固化,固化过程产生大量化学热,制得CQDs/OSTE复合材料。

对比例

配置碳量子点浓度为10mg/mL的碳量子点甲苯溶液作为对比样品1,实施例1中步骤(3)最后制得的未固化的CQDs/OSTE溶液作为对比样品2,分别测试对比样品1、对比样品2和实施例1制备的CQDs/OSTE复合材料在不同激发波长下的荧光光谱,测试结果如图2和图3所示。图2中实线是CQDs甲苯溶液的荧光曲线,虚线为得到的CQDs/OSTE复合材料荧光曲线,通过对比发现CQDs/OSTE复合材料的荧光在不同激发强度下均相较于CQDs甲苯溶液得到明显增强。两种材料的荧光强度数据对比如表1所示,发现荧光强度增强了4~7倍,发射中心略微蓝移。由图3可知,CQDs/OSTE复合材料固化后的荧光强度相较与未固化的溶液同样具有明显的提高,这得益于通过硫自由基与碳量子点表面的悬挂键结合,从而将碳量子点交联到聚合物中,这一过程即通过Thiol monomers有效地钝化碳量子点表面的悬挂键,引入表面发光中心,提高荧光强度;同时,也使得碳量子点可以有效的隔绝空气,提高碳量子点的发光稳定性。

表1

随后对对比样品1以及碳量子点/OSTE复合材料的荧光寿命进行测量,采用波长为405nm、脉宽为70皮秒、频率5MHZ的脉冲激光作为激发光,探测光为470nm。结果如图4所示,实验结果表明CQDs/OSTE复合材料的平均荧光寿命变长,由4.42ns增加到6.09ns。

应用例

以实施例1制备的CQDs/OSTE复合材料为填充材料设计了波长转换器,如图6所示,实验装置包括SiO

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号