首页> 中国专利> 基于静态箱法的采样器采集效率评价装置和评价方法

基于静态箱法的采样器采集效率评价装置和评价方法

摘要

本发明公开了一种基于静态箱法的采样器采集效率评价装置和评价方法。该基于静态箱法的采样器采集效率评价装置包括多个雾化气溶胶发生器;与雾化气溶胶发生器连通的混匀舱,且混匀舱与稀释气源导通;与混匀舱连通的测试仓,测试仓的内部可拆卸安装有被测采样器和参比管路;分析舱,分析舱设置有气溶胶稀释器和气溶胶粒径谱仪,被测采样器和参比管路均与气溶胶稀释器的输入端连通。该基于静态箱法的采样器采集效率评价装置适用于对多种类型的采样器进行采集效率评价;能够产生多种不同粒径的气溶胶,更加真实的模拟大气环境中的颗粒物浓度,减小实验室检测效果与实际大气环境中存在的误差,提升了采样器采集效率评价结果的可靠性。

著录项

  • 公开/公告号CN114923828A

    专利类型发明专利

  • 公开/公告日2022-08-19

    原文格式PDF

  • 申请/专利权人 北京市计量检测科学研究院;

    申请/专利号CN202210509573.1

  • 发明设计人 张国城;刘佳琪;霍胜伟;沈上圯;

    申请日2022-05-11

  • 分类号G01N15/08(2006.01);G01N15/06(2006.01);G01N15/02(2006.01);G01N1/22(2006.01);

  • 代理机构北京集佳知识产权代理有限公司 11227;

  • 代理人万双艳

  • 地址 100029 北京市朝阳区安苑东里一区12号

  • 入库时间 2023-06-19 16:26:56

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-06

    实质审查的生效 IPC(主分类):G01N15/08 专利申请号:2022105095731 申请日:20220511

    实质审查的生效

说明书

技术领域

本发明涉及采样器采集效率评价技术领域,尤其涉及一种基于静态箱法的采样器采集效率评价装置和评价方法。

背景技术

气溶胶是由固态或液态颗粒悬浮在气体中形成的气体分散体系,生物气溶胶指悬浮在气体中的包括花粉、细菌真菌病毒在内的生物颗粒和气体介质的总体,这些颗粒大小不一,从直径小于0.1微米的病毒到直径为100微米或更大的真菌孢子,它们可以以单一未附着的生物体或聚集体的形式出现。生物气溶胶可将致病微生物通过呼吸带入人体,引起对健康的危害。今年来,公共卫生安全愈发受到了社会的关注,对于公共环境(例如车站、机场和社区等人员密集场所),气溶胶中的微生物是传播病毒,引发健康问题的元凶,如何有效采集气溶胶中的微生物,充分了解其浓度和种属等情况,是公共卫生领域研究的关键问题之一。

为了对空气中的气溶胶进行观测,需要对其进行采样。气溶胶采样器按照使用领域的不同可分为环境监测领域和生物安全领域两大类,其中,环境监测领域的采样器包括粉尘浓度测量仪器的前端切割器、呼吸性粉尘采样头和多级撞击采样器等,生物安全领域的采样器包括固体撞击式、液体冲击式、滤膜采样和静电式采样器等。伴随着气溶胶采样器的推广和使用,对其技术参数的规范和统一以及各指标的校准和溯源变得愈发重要,其中采样器的物理效率是评价其采样有效性的重要指标,也是目前国产仪器卡脖子问题。

现有的采样器采集效率评价装置通常仅能使单分散性的标准物质单独进入检测器,而真实的大气环境通常具有多种尺寸和形状的颗粒物,导致采样器采集效率评价装置采集的气体无法模拟真实的大气环境,使得采样器采集效率评价结果的可靠性降低。

因此,如何提升采样器采集效率评价结果的可靠性,是本领域技术人员目前需要解决的技术问题。

发明内容

有鉴于此,本发明的目的在于提供一种采样器采集效率评价装置,以提升采样器采集效率评价结果的可靠性。

为了实现上述目的,本发明提供了如下技术方案:

一种基于静态箱法的采样器采集效率评价装置,包括:

多个能够与生成气源导通的雾化气溶胶发生器,以在多个所述雾化气溶胶发生器中分别装入不同粒径的单分散性颗粒溶液;

与所述雾化气溶胶发生器的输出端连通的混匀舱,且所述混匀舱的输入端能够与稀释气源导通;

与所述混匀舱的输出端连通的测试仓,所述测试仓的内部可拆卸安装有被测采样器和参比管路;

分析舱,所述分析舱设置有气溶胶稀释器和气溶胶粒径谱仪,所述被测采样器和所述参比管路均与所述气溶胶稀释器的输入端连通,且所述被测采样器与所述气溶胶稀释器之间设置有第一电磁阀,所述参比管路与所述气溶胶稀释器之间设置有第二电磁阀。

优选地,在上述基于静态箱法的采样器采集效率评价装置中,还包括控制舱;

所述控制舱内设置有第一质量流量控制器和第二质量流量控制器,所述第一质量流量控制器能够与所述生成气源导通,所述第二质量流量控制器能够与稀释气源导通,所述第一质量流量控制器的输出端与所述雾化气溶胶发生器的输入端连通,所述第二质量流量控制器的输出端与所述混匀舱连通。

优选地,在上述基于静态箱法的采样器采集效率评价装置中,所述控制舱内还设置有多通阀,所述多通阀设置于所述第一质量流量控制器和所述雾化气溶胶发生器之间。

优选地,在上述基于静态箱法的采样器采集效率评价装置中,所述控制舱内还设置有第三质量流量控制器,所述采样器采集效率评价装置还包括抽气泵,所述第三质量流量控制器的一端与所述气溶胶稀释器的上游管路连通,所述第三质量流量控制器的另一端与所述抽气泵连通。

优选地,在上述基于静态箱法的采样器采集效率评价装置中,所述控制舱还设置有操控面板,所述第一质量流量控制器、所述第二质量流量控制器、所述多通阀、所述第三质量流量控制器和所述气溶胶粒径谱仪均与所述操控面板电连接。

优选地,在上述基于静态箱法的采样器采集效率评价装置中,所述采样器采集效率评价装置还包括气源装置,所述气源装置的输出端分别与所述雾化气溶胶发生器和所述混匀舱连通。

优选地,在上述基于静态箱法的采样器采集效率评价装置中,所述雾化气溶胶发生器采用具有文丘里效应及虹吸效应的细管组成。

优选地,在上述基于静态箱法的采样器采集效率评价装置中,所述混匀舱采用能够提高气溶胶均匀性的文丘里结构。

优选地,在上述基于静态箱法的采样器采集效率评价装置中,所述被测采样器为PM2.5切割器。

一种采样器采集效率评价方法,应用如上任意一项所述的基于静态箱法的采样器采集效率评价装置,包括步骤:

S1:将不同粒径的单分散性颗粒溶液分别装入多个雾化气溶胶发生器中;

S2:将多个所述雾化气溶胶发生器的其中一个与生成气源导通,以生成预设粒径的气溶胶,并使气溶胶进入混匀舱,同时,使混匀舱与稀释气源导通,以稀释混匀舱中的气溶胶;

S3:混匀舱中的气溶胶颗粒物进入测试仓,关闭第一电磁阀,打开第二电磁阀,以使测试仓中的气溶胶通过参比管路进入气溶胶稀释器,通过气溶胶粒径谱仪对测试仓中的颗粒物浓度进行初次检测;

S4:关闭第二电磁阀,打开第一电磁阀,以使经被测采样器采集的气溶胶进入气溶胶稀释器,通过气溶胶粒径谱仪对颗粒物浓度进行第二次检测;

S5:重复步骤S2至步骤S4,直至所有的所述雾化气溶胶发生器均生成了预设粒径的气溶胶颗粒物。

优选地,在上述采样器采集效率评价方法中,所述步骤S2包括:

S2-1:通过第一质量流量控制器控制所述雾化气溶胶发生器生成的气溶胶进入混匀舱的气流流速;

S2-1:通过第二质量流量控制器控制所述稀释气源进入所述混匀舱的气流流速。

优选地,在上述采样器采集效率评价方法中,所述步骤S2还包括:

S2-A1:打开多通阀中的其中一个通路,以使多个所述雾化气溶胶发生器的其中一个与生成气源导通。

优选地,在上述采样器采集效率评价方法中,执行所述步骤S3 和所述步骤S4之前,通过第三质量流量控制器控制抽气泵的抽气流量。

使用本发明所提供的基于静态箱法的采样器采集效率评价装置时,由于雾化气溶胶发生器能够与生成气源导通,且雾化气溶胶发生器的输出端与混匀舱连通,因此,通过雾化气溶胶发生器能够产生气溶胶,并将产生的气溶胶输入至混匀舱,由于混匀舱的输入端还与稀释气源导通,因此,通过向混匀舱中通入稀释气源能够对进入混匀舱的气溶胶进行稀释,由于测试仓与混匀舱的输出端连通,因此,混匀舱中的气溶胶能够进入测试仓,使测试仓内的气溶胶具有较高的稳定性和均匀性;由于被测采样器和参比管路均与气溶胶稀释器的输入端连通,且被测采样器与气溶胶稀释器之间设置有第一电磁阀,参比管路与气溶胶稀释器之间设置有第二电磁阀,因此,对被测采样器的采集效率进行评价时,先将第一电磁阀关闭,打开第二电磁阀,使测试仓中的气溶胶通过参比管路进入气溶胶稀释器,通过气溶胶粒径谱仪对测试仓中的颗粒物浓度进行初次检测,以检测测试仓中原始的气溶胶浓度和粒径分布;再关闭第二电磁阀,打开第一电磁阀,经被测采样器采集的气溶胶进入分析舱中的气溶胶稀释器,通过气溶胶粒径谱仪对颗粒物浓度进行第二次检测,通过对比两次测量结构,记录并判断被测采样器的采集效率。由此可见,本发明所提供的基于静态箱法的采样器采集效率评价装置能够产生稳定的气溶胶环境,由于被测采样器可拆卸安装于测试仓的内部,因此,当需要对不同类型的采样器 (例如粉尘采样器、浮游菌采样器或者生物采样器等)进行评价时,只需要将被测采样器更换为对应类型的采样器即可,即该采样器采集效率评价装置适用于对多种类型的采样器进行采集效率评价;并且,由于雾化气溶胶发生器的数量为多个,因此,通过多个雾化气溶胶发生器能够产生多种不同粒径的气溶胶,实现多种单分散性的气溶胶颗粒单独进入测试仓,完成采样器对不同粒径气溶胶颗粒的采集效率评价,或者实现将任意粒径的混合气溶胶颗粒进入测试仓,使测试仓中的混合气溶胶颗粒与实际大气环境更加接近,更加真实的模拟大气环境中的颗粒物浓度,减小实验室检测效果与实际大气环境中存在的误差,提升了采样器采集效率评价结果的可靠性。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例所提供的一种采样器采集效率评价装置的结构示意图;

图2为本发明实施例所提供的一种控制舱的内部结构示意图;

图3为本发明实施例所提供的一种采样器采集效率评价装置发生单一粒径气溶胶时的结构示意图;

图4为本发明实施例所提供的一种采样器采集效率评价装置中设置十个雾化气溶胶发生器的结构示意图;

图5为本发明实施例所提供的一种采样器采集效率评价装置的外部结构示意图;

图6为本发明实施例所提供的一种采样器采集效率评价方法的流程示意图。

其中,100为雾化气溶胶发生器,101为第一雾化气溶胶发生器, 102为第二雾化气溶胶发生器,103为第三雾化气溶胶发生器,104为第四雾化气溶胶发生器,105为第五雾化气溶胶发生器,106为第六雾化气溶胶发生器,107为第七雾化气溶胶发生器,108为第八雾化气溶胶发生器,109为第九雾化气溶胶发生器,110为第十雾化气溶胶发生器,200为混匀舱,300为测试仓,301为被测采样器,302为参比管路,400为分析舱,401为气溶胶稀释器,402为气溶胶粒径谱仪,403 为第一电磁阀,404为第二电磁阀,500为控制舱,501为第一质量流量控制器,502为第二质量流量控制器,503为多通阀,504为第三质量流量控制器,505为操控面板,600为抽气泵,700为气源装置。

具体实施方式

有鉴于此,本发明的核心在于提供一种基于静态箱法的采样器采集效率评价装置,以提升采样器采集效率评价结果的可靠性。

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

如图1至图6所示,本发明实施例公开了一种基于静态箱法的采样器采集效率评价装置,包括雾化气溶胶发生器100、混匀舱200、测试仓300和分析舱400。

其中,雾化气溶胶发生器100的数量为多个,以在多个雾化气溶胶发生器100中分别装入不同粒径的单分散性颗粒(本发明实施例中为单分散标准的聚苯乙烯颗粒),且雾化气溶胶发生器100均能够与生成气源导通,以通过多个雾化气溶胶发生器100生成不同粒径的气溶胶,实现气溶胶的单分散性和多分散性;混匀舱200与雾化气溶胶发生器100的输出端连通,且混匀舱200的输入端能够与稀释气源导通;测试仓300与混匀舱200的输出端连通,测试仓300的内部可拆卸安装有被测采样器301和参比管路302;分析舱400设置有气溶胶稀释器401和气溶胶粒径谱仪402,被测采样器301和参比管路302 均与气溶胶稀释器401的输入端连通,且被测采样器301与气溶胶稀释器401之间设置有第一电磁阀403,参比管路302与气溶胶稀释器 401之间设置有第二电磁阀404。

使用本发明所提供的基于静态箱法的采样器采集效率评价装置时,由于雾化气溶胶发生器100能够与生成气源导通,且雾化气溶胶发生器100的输出端与混匀舱200连通,因此,通过雾化气溶胶发生器100能够产生气溶胶,并将产生的气溶胶输入至混匀舱200,由于混匀舱200的输入端还与稀释气源导通,因此,通过向混匀舱200中通入稀释气源能够对进入混匀舱200的气溶胶进行稀释,满足多方面、多维度控制流量,实现气溶胶浓度的控制,由于测试仓300与混匀舱200的输出端连通,因此,混匀舱200中的气溶胶能够进入测试仓300,使测试仓300内的气溶胶具有较高的稳定性和均匀性;由于被测采样器301和参比管路302均与气溶胶稀释器401的输入端连通,且被测采样器301与气溶胶稀释器401之间设置有第一电磁阀403,参比管路302与气溶胶稀释器401之间设置有第二电磁阀404,因此,对被测采样器301的采集效率进行评价时,先将第一电磁阀403关闭,打开第二电磁阀404,使测试仓300中的气溶胶通过参比管路302进入气溶胶稀释器401,通过气溶胶粒径谱仪402对测试仓300中的颗粒物浓度进行初次检测,以检测测试仓300中原始的气溶胶浓度和粒径分布;再关闭第二电磁阀404,打开第一电磁阀403,经被测采样器 301采集的气溶胶进入分析舱400中的气溶胶稀释器401,通过气溶胶粒径谱仪402对颗粒物浓度进行第二次检测,通过对比两次测量结构,记录并判断被测采样器301的采集效率。由此可见,本发明所提供的基于静态箱法的采样器采集效率评价装置能够产生稳定的气溶胶环境,由于被测采样器301可拆卸安装于测试仓300的内部,因此,当需要对不同类型的采样器(例如粉尘采样器、浮游菌采样器或者生物采样器等)进行评价时,只需要将被测采样器301更换为对应类型的采样器即可,即该采样器采集效率评价装置适用于对多种类型的采样器进行采集效率评价;并且,由于雾化气溶胶发生器100的数量为多个,因此,通过多个雾化气溶胶发生器100能够产生多种不同粒径的气溶胶,实现多种单分散性的气溶胶颗粒单独进入测试仓300,完成采样器对不同粒径气溶胶颗粒的采集效率评价,或者实现将任意粒径的混合气溶胶颗粒进入测试仓300,使测试仓300中的混合气溶胶颗粒与实际大气环境更加接近,更加真实的模拟大气环境中的颗粒物浓度,减小实验室检测效果与实际大气环境中存在的误差,提升了采样器采集效率评价结果的可靠性。

应当理解,上述被测采样器301可以是粉尘采样器、浮游菌采样器或者生物采样器中的任意一种,实际应用中,可以根据实际需求适应性更换采样器的种类,可选地,本发明实施例所提供的被测采样器 301为PM2.5切割器,以评价PM2.5切割器的切割效率。

另外,上述雾化气溶胶发生器100的数量不作具体限定,只要是能够满足使用要求的数量均属于本发明保护范围内,可选地,如图4 所示,本发明实施例所提供的雾化气溶胶发生器100的数量为十个。

进一步地,该基于静态箱法的采样器采集效率评价装置还包括控制舱500,控制舱500内设置有第一质量流量控制器501和第二质量流量控制器502,第一质量流量控制器501能够与生成气源导通,第二质量流量控制器502能够与稀释气源导通,第一质量流量控制器501 的输出端与雾化气溶胶发生器100的输入端连通,第二质量流量控制器502的输出端与混匀舱200连通,以便于通过第一质量流量控制器 501控制雾化气溶胶发生器100生成的气溶胶进入混匀舱200的气流流速,通过第二质量流量控制器502控制稀释气源进入混匀舱200的气流流速,使混匀舱200内形成稳定的气溶胶环境。

另外,控制舱500内还设置有多通阀503,多通阀503设置于第一质量流量控制器501和雾化气溶胶发生器100之间,以便于通过多通阀503控制多个雾化气溶胶发生器100中的一个或者多个与生成气源导通,多种单分散标准的聚苯乙烯颗粒可以通过下文所述的操控面板505实现单独通过各自管路进入测试仓300,也可以通过多通阀503 的控制实现任意尺寸标准聚苯乙烯颗粒的混合气溶胶发射,既满足单分散粒径评价,也实现了多分散粒径评价要求,提高了评价方式的多元性和科学性。

应当理解,上述多通阀503可以是四通阀、八通阀或者十通阀等任意类型,只要是能够满足使用要求的类型均属于本发明保护范围内;可选地,本发明实施例所提供的多通阀503为十通阀。

如图2所示,控制舱500内还设置有第三质量流量控制器504,该采样器采集效率评价装置还包括抽气泵600,第三质量流量控制器 504的一端与气溶胶稀释器401的上游管路连通,第三质量流量控制器504的另一端与抽气泵600连通,以便于控制抽气泵600对气溶胶稀释器401的上游管路进行抽气,通过第三质量流量控制器504控制抽气流量,使抽气泵600的抽气流量与气溶胶粒径谱仪402的抽气流量的总和满足被测采样器301的工作流量要求。

本文所述的气溶胶稀释器401的上游管路指的是在流经气溶胶稀释器401之前先流经的管路。

更进一步地,控制舱500还设置有操控面板505,第一质量流量控制器501、第二质量流量控制器502、多通阀503、第三质量流量控制器504和气溶胶粒径谱仪402均与操控面板505电连接,以便于通过操控面板505控制第一质量流量控制器501、第二质量流量控制器502和第三质量流量控制器504的气流流速,以及控制多通阀503的开闭,并将气溶胶粒径谱仪402的检测结果显示在操控面板505上,便于工作人员读取检测结果,通过气溶胶粒径谱仪402能够实现气溶胶浓度、通路中粒子残留情况和粒径尺寸分布三方面的监控,从而提高气溶胶浓度和粒径控制能力,以及对管路清洁程度的监控能力,以实现及时吹扫,提高检测效率,减小误差。

同时,上述控制面板能够实时显示该采样器采集效率评价装置的运行状态和气溶胶粒径谱仪402分析结果,实现了可视化的操作方式和及时报错的监控机制,并且,通过自动控制多通阀503、第一质量流量控制器501和第二质量流量控制器502等,实现了整个装置的自动化,提高了整个装置的可控性和准确性,提高了效率,方便快捷。

需要说明的是,生成气源与稀释气源可以为同一气源,也可以不是同一气源,只要是能够满足使用要求即可;并且,生成气源和稀释气源均可以是压缩空气或者氧气中的任意一种,可选地,本发明实施例所提供的生成气源与稀释气源均通过气源装置700生成,气源装置 700的输出端分别与雾化气溶胶发生器100和混匀舱200连通,以便于使气源装置700生成的一部分气源通入雾化气溶胶发生器100,作为生成气源,另一部分气源通入混匀舱200,作为稀释气源。

本发明所提供的雾化气溶胶发生器100采用具有文丘里效应及虹吸效应的细管组成,以通过控制气流大小调节气溶胶的发生浓度。

另外,混匀舱200采用文丘里结构,以提高混匀舱200内气溶胶的均匀性。

在本发明的一个具体实施例中,以PM2.5旋风式切割器效率评价为例,雾化气溶胶发生器100的数量为十个,分别为第一雾化气溶胶发生器101、第二雾化气溶胶发生器102、第三雾化气溶胶发生器103、第四雾化气溶胶发生器104、第五雾化气溶胶发生器105、第六雾化气溶胶发生器106、第七雾化气溶胶发生器107、第八雾化气溶胶发生器 108、第九雾化气溶胶发生器109和第十雾化气溶胶发生器110,在第一雾化气溶胶发生器101至第八雾化气溶胶发生器108中分别装入1.5 ±0.25μm,2.0±0.25μm,2.2±0.25μm,2.5±0.25μm,2.8±0.25 μm,3.0±0.25μm,3.5±0.25μm,4.0±0.25μm的单分散标准聚苯乙烯颗粒溶液。然后,将气源装置700与第一质量流量控制器501的输入端相连通,第一质量流量控制器501的输出端与多通阀503(此处为十通阀)的输入端相连通,多通阀503的输出端与雾化气溶胶发生器100的输入端连通,雾化气溶胶发生器100输出端与混匀舱200 的输入端相连通;气源装置700与第二质量流量控制器502的输入端相连通,第二质量流量控制器502的输出端与混匀舱200的输入端相连通,在混匀舱200中对雾化气溶胶发生器100产生的气溶胶进行稀释。

进一步地,混匀舱200与测试仓300连通,测试仓300中被测采样器301和参比管路302分别通过第一电磁阀403和第二电磁阀404 与气溶胶稀释器401相连通,气溶胶稀释器401与气溶胶粒径谱仪402 相连通;气溶胶稀释器401的上游管路与第三质量流量控制器504的输入端相连通,第三质量流量控制器504的输出端与抽气泵600相连通,以调节抽气流量使抽气泵600与气溶胶粒径谱仪402抽气流量的总和满足PM2.5切割器的工作流量(16.7L/min)。

初次检测时,通过操控面板505打开多通阀503的第一通路,如图2所示,使标准粒径为1.5±0.25μm的聚苯乙烯小球进入混匀舱 200,分析舱400中的第二电磁阀404打开,第一电磁阀403关闭,通过参比管路302连通测试仓300和气溶胶稀释器401,分析舱400中的气溶胶稀释器401和气溶胶粒径谱仪402分别气动稀释功能和分析功能,并将分析结果显示在控制器的操控面板505上;然后进行二次检测,分析舱400中的第一电磁阀403打开,第二电磁阀404关闭,使分析舱400与PM2.5切割器连通,经PM2.5切割器切割后的气溶胶进入分析舱400中的气溶胶稀释器401和气溶胶粒径谱仪402,气溶胶稀释器401和气溶胶粒径谱仪402分别启动稀释和分析,并将分析结果显示在操控面板505上;通过对比两次测量结果,判断并记录 PM2.5切割器的切割情况,至此单一尺寸的采样器采集效率测量完毕,吹扫公共管路。

完成单一尺寸的采样器采集效率测量后,通过操控面板505关闭上一尺寸颗粒所属通路,接通下一尺寸颗粒所属通路,使得相应尺寸的标准聚苯乙烯颗粒进入混匀舱200和测试仓300,分析舱400中的气溶胶粒径谱仪402按照先测量参比管路302,再测量PM2.5切割器的顺序依次检测颗粒物浓度,分析结果显示在操控面板505上;通过对比两次测量结果,判断并记录PM2.5切割器的切割情况,至此完成另一单一尺寸的采样器采集效率测量,吹扫公共管路;重复上述步骤直到所有粒径通路均经历接通和关闭的步骤,从而完成不同粒径PM2.5切割器切割效率评价。

此外,本发明还公开了一种采样器采集效率评价方法,应用如上任意一项所述的基于静态箱法的采样器采集效率评价装置,包括步骤:

S1:将不同粒径的单分散性颗粒溶液分别装入多个雾化气溶胶发生器100中,以便于实现气溶胶的单分散性和多分散性。

S2:将多个雾化气溶胶发生器100的其中一个与生成气源导通,以生成预设粒径的气溶胶,并使气溶胶进入混匀舱200,同时,使混匀舱200与稀释气源导通,以稀释混匀舱200中的气溶胶,以便于检测被测采样器301对其中一个预设粒径的气溶胶的采样效率。

S3:混匀舱200中的气溶胶颗粒物进入测试仓300,关闭第一电磁阀403,打开第二电磁阀404,以使测试仓300中的气溶胶通过参比管路302进入气溶胶稀释器401,通过气溶胶粒径谱仪402对测试仓 300中的颗粒物浓度进行初次检测,以便于检测测试仓300中原始气溶胶的浓度和粒径分布。

S4:关闭第二电磁阀404,打开第一电磁阀403,以使经被测采样器301采集的气溶胶进入气溶胶稀释器401,通过气溶胶粒径谱仪 402对颗粒物浓度进行第二次检测,以便于检测经被测采样器301采集的气溶胶的浓度和粒径分布,将两次测量结果进行比对后,记录并判断被测采样器301的采集效率。

S5:重复步骤S2至步骤S4,直至所有的雾化气溶胶发生器100 均生成了预设粒径的气溶胶颗粒物,以完成不同粒径的被测采样器 301的采集效率评价。

由此可见,本发明所提供的采样器采集效率评价方法能够产生稳定的气溶胶环境,通过多个雾化气溶胶发生器100能够产生多种不同粒径的气溶胶,实现多种单分散性的气溶胶颗粒单独进入测试仓300,完成采样器对不同粒径气溶胶颗粒的采集效率评价,或者实现将任意粒径的混合气溶胶颗粒进入测试仓300,使测试仓300中的混合气溶胶颗粒与实际大气环境更加接近,更加真实的模拟大气环境中的颗粒物浓度,减小实验室检测效果与实际大气环境中存在的误差,提升了采样器采集效率评价结果的可靠性。

需要说明的是,在结束上述步骤S4之后,开始步骤S5之前,即采样器对单一尺寸气溶胶采集效率评价试验结束后,需通过气源对公共管路进行吹扫,防止影响后续检测的精确性。

另外,由于被测采样器301可拆卸安装于测试仓300的内部,因此,上述采样器采集效率评价方法为基于静态箱法的采样器采集效率评价方法,粉尘环境较为稳定,适用于粉尘采样器、浮游菌采样器或者生物采样器中等多种类型的采样器,实际应用中,可以根据实际需求适应性更换采样器的种类,可选地,本发明实施例所提供的被测采样器301为PM2.5切割器,以评价PM2.5切割器的切割效率。

并且,上述雾化气溶胶发生器100的数量不作具体限定,只要是能够满足使用要求的数量均属于本发明保护范围内,可选地,本发明实施例所提供的雾化气溶胶发生器100的数量为十个。

进一步地,上述步骤S2包括:

S2-1:通过第一质量流量控制器501控制雾化气溶胶发生器100 中的气溶胶进入混匀舱200的气流流速,使进入混匀舱200的气溶胶具有稳定的流速。

S2-1:通过第二质量流量控制器502控制稀释气源进入混匀舱200 的气流流速,以使混匀舱200内形成稳定的气溶胶环境。

另外,上述步骤S2还包括位于步骤S2-1之前的:

S2-A1:打开多通阀503中的其中一个通路,以使多个雾化气溶胶发生器100的其中一个与生成气源导通。

此外,该采样器采集效率评价方法在执行步骤S3和步骤S4之前,通过第三质量流量控制器504控制抽气泵600的抽气流量,以使抽气泵600的抽气流量与气溶胶粒径谱仪402的抽气流量的总和满足被测采样器301的工作流量要求。

应当理解,上述通过抽气泵600抽气的步骤可以位于步骤S1和/ 或S2之后,只要是在执行步骤S3和步骤S4之前,能够使抽气泵600 的抽气流量与气溶胶粒径谱仪402的抽气流量的总和满足被测采样器 301的工作流量要求的步骤均属于本发明保护范围内。

本发明的说明书和权利要求书及上述附图中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述特定的顺序。此外术语“包括”和“具有”以及他们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有设定于已列出的步骤或单元,而是可包括没有列出的步骤或单元。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号