首页> 中国专利> 一种气溶胶稀释系统、稀释方法及光度计校准装置

一种气溶胶稀释系统、稀释方法及光度计校准装置

摘要

本发明公开了一种气溶胶稀释系统、稀释方法及光度计校准装置,稀释系统包括混匀稀释器、第一稀释气路、混合气路以及缓冲箱;混匀稀释器包括混匀腔和与混匀腔连通的第一稀释气入口、混合气入口、出气口;第一稀释气路与第一稀释气入口连接,用于向混匀腔内提供第一路稀释气;混合气路与混合气入口连接,混合气路分别与第二稀释气路和气溶胶气路连接,第二路稀释气和气溶胶混合、并在混匀稀释器的内腔负压作用下经混合气入口流入混匀腔内;缓冲箱与出气口通过管路连接;第一稀释气路、第二稀释气路以及气溶胶气路的流量可调节。该稀释系统能够实现精确的稀释比,稀释比调节精准,有效提高光度计的校准精度。

著录项

  • 公开/公告号CN114923762A

    专利类型发明专利

  • 公开/公告日2022-08-19

    原文格式PDF

  • 申请/专利权人 青岛众瑞智能仪器股份有限公司;

    申请/专利号CN202210509026.3

  • 申请日2022-05-11

  • 分类号G01N1/38(2006.01);G01N21/27(2006.01);G01N21/31(2006.01);

  • 代理机构青岛联智专利商标事务所有限公司 37101;

  • 代理人孙爱乔

  • 地址 266108 山东省青岛市城阳区建宁路10号

  • 入库时间 2023-06-19 16:25:24

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-06

    实质审查的生效 IPC(主分类):G01N 1/38 专利申请号:2022105090263 申请日:20220511

    实质审查的生效

说明书

技术领域

本发明涉及气溶胶检测技术领域,尤其涉及一种气溶胶稀释系统、稀释方法及光度计校准装置。

背景技术

气溶胶由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,又称气体分散体系。其分散相为固体或液体小质点,其大小为0.001-100微米,分散介质为气体。气溶胶在医学、环境科学、军事学方面都有广泛应用。

在许多空气中的颗粒测量和颗粒浓度研究中,使用气溶胶光度计来检测被监测环境中的颗粒质量浓度。目前在口罩、熔喷布等滤材生产检测中,使用气溶胶颗粒来检测滤材的过滤效率。气溶胶光度计是一种简单的光学测量系统,通过建立气溶胶质量浓度和光电探测器的光电信号之间的关系,可实现气溶胶质量浓度的实时检测。

光度计的校准则需要一种精准的光度计校准装置:所发生的的气溶胶浓度高低可控(0-120μg/L)、混合均匀,其浓度稳定性好。

气溶胶稀释系统作为光度计校准装置的关键结构,可直接影响光度计校准的准确性和稳定性。气溶胶稀释系统还可以与气溶胶检测装置一起使用, 例如冷凝颗粒计数器(CPC)、光学粒子计数器(OPC)、谱仪、或本领域已知的其它类型的粒子监测装置(包括虚拟冲击器、级联冲击器等)。

现有技术常见的气溶胶稀释系统一般采用一路稀释气和一路气溶胶直接在混合箱中混合,气溶胶的稀释比例不好调节,混合不均匀,影响光度计的校准精度。

本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。

发明内容

针对背景技术中指出的问题,本发明提出一种气溶胶稀释系统、稀释方法及光度计校准装置,该稀释系统能够实现精确的稀释比,稀释比调节精准,有效提高光度计的校准精度。

为实现上述发明目的,本发明采用下述技术方案予以实现:

本发明提供一种气溶胶稀释系统,包括:

混匀稀释器,其包括混匀腔和与所述混匀腔连通的第一稀释气入口、混合气入口、出气口;

第一稀释气路,其与所述第一稀释气入口连接,用于向所述混匀腔内提供第一路稀释气;

混合气路,其与所述混合气入口连接,所述混合气路分别与第二稀释气路和气溶胶气路连接,所述第二稀释气路内的第二路稀释气和所述气溶胶气路内的气溶胶混合、并在所述混匀稀释器的内腔负压作用下经所述混合气入口流入所述混匀腔内;

缓冲箱,其与所述出气口通过管路连接;

其中,所述第一稀释气路、所述第二稀释气路以及所述气溶胶气路的流量可调节。

本申请一些实施例中,所述第一稀释气入口和所述出气口相对地设于所述混匀稀释器的两端;

所述混匀稀释器的内腔中设有与所述第一稀释气入口和所述混匀腔连通的连通段,所述混合气入口与所述连通段连通;

所述混匀稀释器的侧壁上设有调节杆,所述调节杆的一端伸入所述连通段内、并正对所述混合气入口,所述调节杆的端部与所述混合气入口的出气端之间为锥形配合,通过所述调节杆的运动来调节所述混合气路的混合气流入量。

本申请一些实施例中,所述混匀稀释器的内腔中设有加速段,所述加速段的一端与所述第一稀释气入口连通,另一端与所述连通段连通。

本申请一些实施例中,所述混匀腔自所述连通段向所述出气口的方向呈渐扩结构。

本申请一些实施例中,所述第二稀释气路和所述气溶胶气路通过三通结构与所述混合气路连接,所述三通结构与所述混合气入口之间的管路上设有流量检测装置。

本申请一些实施例中,所述第一稀释气路和所述气溶胶气路由同一气源系统提供洁净气,所述第二稀释气路通过干燥器和过滤器从大气中吸取洁净气。

本发明还提供一种气溶胶稀释方法,包括:

由气溶胶气路提供气溶胶,由第一稀释气路提供第一路稀释气,由第二稀释气路提供第二路稀释气;

利用混匀稀释器对气溶胶和稀释气进行射流式混匀;

气溶胶和第二路稀释气在三通结构内混合后再流入所述混匀稀释器的内腔中,第一路稀释气直接流入所述混匀稀释器的内腔中,第一路稀释气向所述混匀稀释器的出气口方向流动的过程中产生负压,将气溶胶和第二路稀释气的混合气吸入所述混匀稀释器的内腔中,使第一路稀释气和混合气在所述混匀稀释器的内腔中进行混合;

混合后的气体再经所述出气口流向下游的缓冲箱。

本发明还提供一种光度计校准装置,包括:

气源系统、校准系统以及如上所述的气溶胶稀释系统;

所述气源系统向所述第一稀释气路和所述气溶胶气路提供洁净气;

所述校准系统包括取样腔,所述取样腔连接有光度计和被校准光度计,所述缓冲箱通过管路与所述取样腔连通。

本申请一些实施例中,所述校准系统包括上夹具腔和下夹具腔,所述上夹具腔和所述下夹具腔相对运动以对接围成所述取样腔,所述上夹具腔与所述下夹具腔之间设有称重滤膜夹具和分流环,所述光度计和所述被校准光度计通过管路连接于所述分流环上,所述下夹具腔的出气端连接抽气泵。

本申请一些实施例中,所述气源系统包括依次连接的空气压缩机、汽包、冷干机、干燥器以及高效过滤器。

与现有技术相比,本发明的优点和积极效果是:

本申请所公开的气溶胶稀释系统中采用两路稀释气和一路气溶胶进行混合,并且其中一路稀释气和气溶胶是在混匀稀释器的负压作用下被吸入的,在进行稀释比例调节时,第一稀释气路和气溶胶气路起到主要调节作用,第二稀释气路起到辅助微调作用,有助于实现精准的流量配比,以得到精准的稀释比,并且稀释比可调的范围宽。

通过混匀稀释器对稀释气和气溶胶进行射流混合,气溶胶混合稀释均匀,并且在缓冲箱中可进一步混合,一方面进一步提高混合均匀性,另一方面可避免气流波动影响光度计校准系统内气流的稳定性,提高校准精度。

第一稀释气路、第二稀释气路以及气溶胶气路的流量可调节,可便精准控制混合稀释比例,满足不同的校准实验需求。

该气溶胶稀释系统可以基本实时地、恒定地或周期性地确定稀释系统的稀释比,使所发生的的气溶胶浓度高低可控(0-120μg/L),并且气溶胶发生浓度稳定。

在整个稀释和校准过程中,气溶胶始终是动态流动的,可有效防止气溶胶静止时的浓度陡增和突降等不良影响,保证校准精度。

结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为根据实施例的光度计校准装置的结构示意图;

图2为根据实施例的混匀稀释器的结构示意图;

图3为根据实施例的混匀稀释器的俯视图;

图4为图3中A-A向剖视图;

图5为根据实施例的三通结构的结构示意图;

图6为图5中B-B向剖视图;

附图标记:

100-气源系统;

101-空气压缩机,102-汽包,103-冷干机,104-干燥器,105-高效过滤器;

200-稀释系统;

201-第一流量调节阀,202-第一计温传感器,203-第一压差传感器,204-第一孔口流量计,205-混匀稀释器,2051-第一稀释气入口,2052-调节杆、2053-连通段,2054-锥型结构,2055-加速段,2056-混合气入口,2057-混匀腔,2058-出气口,206-第二稀释气过滤器,207-第二计温传感器,208-第二孔口压差传感器,209-第二流量调节阀,210-第二孔口流量计,211-第三孔口流量计,212-第三孔口压差传感器,213-第三计温传感器,214-混合三通,2141-主管路,2142-支管路,215-静电计,216-孔板限流器,217-气溶胶调节阀,218-气溶胶发生器调节阀,219-压力表,220-喷雾头,221-气溶胶发生器储液箱,222-余气过滤器,223-气压平衡过滤器,224-缓冲箱,225第二稀释气干燥器;

300-校准系统;

301-两位五通电磁阀,302-夹紧气缸,303-夹持器支架,304-分流环,305-上夹具腔,306-称重滤膜夹具,307-光度计,308-被校准光度计,309-泵前端过滤器,310-泵前端计温传感器,311-泵前端孔口流量计,312-泵前端压差传感器,313-抽气泵,314-下夹具腔;

S1-第一稀释气路;

S2-第二稀释气路;

S3-气溶胶气路;

S4-混合气路;

Q1-第一路稀释气;

Q2-第二路稀释气;

Q3-气溶胶;

P-混合气。

具体实施方式

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。

术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。

在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。

在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。

下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。

本实施例公开一种光度计校准装置,其利用特定浓度的气溶胶对光度计进行校准。

参照图1,光度计校准装置包括气源系统100、气溶胶稀释系统200以及校准系统300。

气源系统100用于向气溶胶稀释系统200和校准系统300提供气源。

气溶胶稀释系统200用于对气溶胶进行稀释,以得到一定浓度的气溶胶,供校准系统300使用。

气溶胶稀释系统200主要包括混匀稀释器205、第一稀释气路S1、混合气路S4以及缓冲箱224等组成。

混匀稀释器205是气溶胶稀释系统200的核心关键部件,用于对稀释气和气溶胶进行混合稀释,混合稀释后的气溶胶再流入缓冲箱224,供光度计校准系统300使用。

进入混匀稀释器205的气体有三路,分别是第一路稀释气、第二路稀释气以及气溶胶,第一路稀释气由第一稀释气路S1提供,第二路稀释气由第二稀释气路S2提供,气溶胶由气溶胶气路S3提供。

第二稀释气路S2和气溶胶气路S3同时连接于混合气路S4,第二路稀释气和气溶胶在混合气路S4内混合后,再流入混匀稀释器205,与第一路稀释气进行二次混合稀释。

混匀稀释器205的内部设有混匀腔2057,其壁上设有与混匀腔2057连通的第一稀释气入口2051、混合气入口2056以及出气口2058。

第一稀释气路S1与第一稀释气入口2051连接,第一稀释气路S1内的稀释气经第一稀释气入口2051流入混匀腔2057中。

混合气路与混匀气入口2056连接,第二稀释气路S2内的稀释气和气溶胶气路S3内的气溶胶混合、并在混匀稀释器205的内腔负压作用下经混合气入口2056流入混匀腔2057内。

第一路稀释气和混合气在混匀腔2057内混合稀释后,再经出气口2058流向缓冲箱224。

通过混匀稀释器205对稀释气和气溶胶进行射流混合,气溶胶混合稀释均匀,并且在缓冲箱224中可进一步混合,一方面进一步提高混合均匀性,另一方面可避免气流波动影响光度计校准系统300内气流的稳定性,提高校准精度。

第一稀释气路S1、第二稀释气路S2以及气溶胶气路S3的流量可调节,可便精准控制混合稀释比例,满足不同的校准实验需求。

采用两路稀释气和一路气溶胶进行混合,并且其中一路稀释气和气溶胶是在混匀腔2057的负压作用下被吸入的,在进行稀释比例调节时,第一稀释气路S1和气溶胶气路S3起到主要调节作用,第二稀释气路S2起到辅助微调作用,有助于实现精准的流量配比,以得到精准的稀释比,并且稀释比可调的范围宽。

在整个稀释和校准过程中,气溶胶始终是动态流动的,可有效防止气溶胶静止时的浓度陡增和突降等不良影响,保证校准精度。

本申请一些实施例中,参照图2至图4,第一稀释气入口2051和出气口2058相对地设于混匀稀释器205的两端;混匀稀释器205的内腔中设有与第一稀释气入口2051和混匀腔2057连通的连通段2053,连通段2053垂直地设于第一稀释气入口2051和混匀腔2057之间,混合气入口2056设于混匀稀释器205的侧壁靠中间的位置处、与连通段2053连通。

第一路稀释气经第一稀释气入口2051流入,在向混匀腔2057流动的过程中会经过连通段2053,在连通段2053处产生负压,利用文丘里原理,混合气路S4内由第二路稀释气和气溶胶混合而成的混合气经混合气入口2056被吸入,与第一路稀释气一同流向混匀腔2057,再经出气口2058流出。

混匀稀释器205的侧壁上设有调节杆2052,调节杆2052与混合气入口2056相对设置,调节杆2052的一端伸入连通段2053内、并正对混合气入口2056,调节杆2052的端部与混合气入口2056的出气端之间为锥形配合,通过调节杆2052的运动来调节混合气路S4的混合气流入量。

本申请一些实施例中,混匀稀释器205的内腔中设有加速段2055,加速段2055的一端与第一稀释气入口2051连通,另一端与连通段2053连通,加速段2055对流入的第一路稀释气进行加速,提高其在连通段2053处产生负压的效果,同时高速流动的第一路稀释气对从混合气入口2056流入的混合气起到射流冲击的作用,提高混匀效果。

本申请一些实施例中,第一稀释气入口2051与加速段2055之间由渐缩的锥型结构2054过渡连接,对气流起到引流导向作用。

本申请一些实施例中,混匀腔2057自连通段2053向出气口2058的方向呈渐扩结构,提高第一路稀释气与混合气的混匀效果,也便于混合稀释后的气体经出气口2058向下游流动。

本申请一些实施例中,第二稀释气路S2和气溶胶气路S3通过三通结构214与混合气路S4连接,三通结构214与混合气入口2056之间的管路上设有流量检测装置,标记为第三流量检测装置,用于检测混合气流量。

第三流量检测装置包括第三孔口流量计211、第三孔口压差传感器212以及第三计温传感器213,第三孔口压差传感器212用于测量孔板前后的压差,第三计温传感器213用于测量孔板的计前温度。

三通结构214如图5和图6所示,三通结构214包括两端贯通的主管路2141和插设于主管路2141上的支管路2142,支管路2142呈L型结构,支管路2142设于主管路2141的侧壁上,支管路2142的出气端沿主管路2141内的气体流动方向延伸。

主管路2141的内径大于支管路2142的内径,主管路2141的一端与气溶胶气路S3连接,另一端与混合气路S4连接,支管路2142与第二稀释气路S2连接。

气溶胶和第二路稀释气在主管路2141内混合,再一同流向混合气路S4。

本申请一些实施例中,第一稀释气路S1上设有第一流量调节阀201和第一流量检测装置。

第一流量调节阀201用于调节第一路稀释气的流量。

第一流量检测装置用于检测第一路稀释气的流量,其包括第一孔口流量计204、第一孔口压差传感器203以及第一计温传感器202,第一孔口压差传感器203用于测量孔板前后的压差,第一计温传感器202用于测量孔板的计前温度。

本申请一些实施例中,第二稀释气路S2上设有第二稀释气干燥器225、第二稀释气过滤器206、第二流量调节阀209以及第二流量检测装置。

第二流量调节阀209用于调节第二路稀释气的流量。

第二流量检测装置用于检测第二路稀释气的流量,其包括第二孔口流量计210、第二孔口压差传感器208以及第二计温传感器207,第二孔口压差传感器208用于测量孔板前后的压差,第二计温传感器207用于测量孔板的计前温度。

第二路稀释气在混匀稀释器205所产生的负压下,抽气空气经过第二稀释气干燥器225和第二稀释气过滤器206,过滤掉空气中的水分和颗粒物,再经过第二流量调节阀209和第二流量检测装置,与气溶胶在三通结构214内混合。

本申请一些实施例中,气溶胶气路S3包括气溶胶发生器调节阀218、喷雾头220、储液箱221、余气过滤器222、气溶胶调节阀217(采用球阀)、孔板限流器216、气溶胶静电计215,静电计215设于三通结构214与孔板限流器216之间。

洁净的压缩气经气溶胶发生器调节阀218流至喷雾头20,喷雾头220沉浸在气溶胶发生器的储液箱221内的溶液中,在压缩气作用下喷雾头220产生气溶胶,所产生的气溶胶分为两路,一路气溶胶经余气过滤器222排出,另一路气溶胶在在混匀稀释器205所产生的负压作用下经气溶胶调节阀217和孔板限流器216流至三通结构214,与第二路稀释气混合,混合气经混合气路S4和第三流量检测装置流入混匀稀释器205。

稀释比的计算示例如下:

静电计215测得经过孔板限流器216的气溶胶浓度为1ug/L ,第一孔口流量计204测得第一稀释气的流量为100L/min,调节混匀稀释器的调节杆2052使第三孔口流量计211流量为1L/min,调节第二流量调节阀209使经过第二孔口流量计210的第二稀释气的流量为0.5L/min,则通过孔板限流器216进入到三通结构214的气溶胶流量为1-0.5=0.5L/min,则进入到混匀稀释器205的气溶胶的浓度为0.5*1/1=0.5ug/L,在经过进入到混匀稀释器205后进入到缓冲箱224的浓度为:0.5*1/(100+1)=0.00495ug/L,则此时的稀释比为1:0.00495,接近202倍的稀释比。通过调节杆2052和第二流量调节阀209可以得到更大的稀释比。

本实施例中的稀释系统可以基本实时地、恒定地或周期性地确定稀释系统的稀释比,使所发生的的气溶胶浓度高低可控(0-120μg/L),并且气溶胶发生浓度稳定。

本申请一些实施例中,缓冲箱224上连接有气压平衡过滤器223,从混匀稀释器205流出的气体流入缓冲箱224后,缓冲箱224内呈现一定的正压,通过气压平衡过滤器223来平衡缓冲箱224内的气压,有助于提高校准系统300内的气压稳定,提高校准精度。

本申请一些实施例中,第一稀释气路S1和气溶胶气路S3由同一气源系统100提供洁净的压缩气,第二稀释气路S2通过干燥器和过滤器从大气中吸取洁净气。

气源系统100引出的气路少,气流稳定,有助于提高整个系统的稳定性和精准性。

本申请一些实施例中,气源系统100包括依次连接的空气压缩机101、汽包102、冷干机103、干燥器104以及高效过滤器105。

空气压缩机101对汽包102进行打气,气压到达一定压力后停止打气,压缩气经过冷干机103除去气体中的水汽,在经过干燥器104对未去除的小水滴进行吸附,在经过高效过滤器105过滤掉气源中的颗粒物,得到洁净的压缩气。

洁净的压缩气分为三路,一路供向第一稀释气路S1,一路供向气溶胶气路S3,一路供向校准系统300。

本申请一些实施例中,校准系统300包括上夹具腔305和下夹具腔314,上夹具腔305和下夹具腔314相对运动以对接围成取样腔,上夹具腔305和下夹具腔314的上下相对运动通过夹紧气缸302实现,从气源系统100引出的一路压缩气为夹紧气缸302提供动力。上夹具腔305与下夹具腔314之间设有称重滤膜夹具306和分流环304,光度计307和被校准光度计308通过管路连接于分流环304上,下夹具腔314的出气端连接抽气泵313,光度计307和被校准光度计308都分别自带动力源。

校准系统300中压缩气接入到两位五通电磁阀301,控制夹紧气缸302进行动作,进而控制上夹具腔305上下移动,夹紧气缸302和下夹具腔314分别固定在夹持器支架303上部和下部。上夹具腔305和下夹具腔314由上往下分别放置分流环304、称重滤膜夹具306,分流环304上对称设置两个出气接嘴,出气接嘴分别连接精密气溶胶光度计307和被校准气溶胶光度计308,下夹具腔314下端依次连接泵前端过滤器309、泵前端孔口流量计311、抽气泵313,泵前端孔口流量计311的孔板前端和孔板两侧分别设置泵前端计温传感器310和泵前端孔口压差传感器312,泵前端计温传感器310测得泵前端孔口流量计311的孔板计前温度,泵前端孔口压差传感器312测得泵前端孔口流量计311孔板前后的压差,从而计算出抽气泵313的抽气流量,通过调节抽气泵313的转速使泵前端孔口流量计311测的流量与精密气溶胶光度计307、被校准气溶胶光度计308的采样流量保持一致。

缓冲箱224通过管路与校准系统300中的取样腔连通,缓冲箱224中的气溶胶在抽气泵313、精密气溶胶光度计307、被校准气溶胶光度计308作用下流入到上夹具腔305、下夹具腔314、称重滤膜夹具306、分流环304形成的腔室(即取样腔)内,由于抽气泵313、精密气溶胶光度计307、被校准气溶胶光度计308的抽气流量一致,保证腔室内的气溶胶均匀分配。在进行光度计标定时,在称重滤膜夹具306放置称重滤膜,抽气泵313、精密气溶胶光度计307、被校准气溶胶光度计308同时抽气,由于气溶胶是均匀分配的,这样进入到精密气溶胶光度计307、被校准气溶胶光度计308的气溶胶总量以及滤膜所捕集的气溶胶总量可保证很好的一致性,使用精密气溶胶光度计307示值浓度来校准被校准气溶胶光度计308,同时滤膜所捕集的气溶胶可作为校准结果的溯源。

本申请一些实施例中,利用图1所示的系统进行气溶胶稀释,稀释方法为:

由气溶胶气路提供气溶胶,由第一稀释气路S1提供第一路稀释气,由第二稀释气路S2提供第二路稀释气;

利用混匀稀释器205对气溶胶和稀释气进行射流式混匀;

气溶胶和第二路稀释气在三通结构214内混合后再流入混匀稀释器205的内腔中,第一路稀释气直接流入混匀稀释器205的内腔中,第一路稀释气向混匀稀释器205的出气口方向流动的过程中产生负压,将气溶胶和第二路稀释气的混合气吸入混匀稀释器205的内腔中,使第一路稀释气和混合气在混匀稀释器205的内腔中进行混合;

混合后的气体再经出气口流向下游的缓冲箱224。

在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

以上仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号