首页> 中国专利> 伴生矿放射性酸性废水无害化治理及资源化利用的方法

伴生矿放射性酸性废水无害化治理及资源化利用的方法

摘要

本发明提供一种伴生矿放射性酸性废水无害化治理及资源化利用的方法,该方法能对含铀废水进行无害化处理并能回收铀;该方法将含铀与其他金属的废水经过预氧化后,调节pH至弱碱性使废水中金属元素形成沉淀,同时利用沉淀吸附废水中的铀,然后利用CO

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-04-18

    授权

    发明专利权授予

  • 2022-08-23

    实质审查的生效 IPC(主分类):C02F 9/04 专利申请号:2022104563838 申请日:20220427

    实质审查的生效

  • 2022-08-05

    公开

    发明专利申请公布

说明书

技术领域

本发明属于伴生矿放射性废水治理技术领域,涉及一种伴生矿放射性酸性废水无害化治理及资源化利用的方法。

背景技术

2020年11月24日生态环境部发布《矿产资源开发利用辐射环境监督管理名录》,将稀土、锆及氧化锆、铌/钽、锡、铝、铅/锌、铜、铁、钒、钼、镍、锗、钛、金、磷酸盐、煤等18个矿种纳入监管的伴生放射性矿产类别。根据《陕西省伴生放射性矿调查报告》主要成果显示,陕西省伴生放射性矿辐射水平陕北较低、关中次之、陕南最高,辐射水平变化规律与陕西省矿产资源分布相匹配。放射性水平偏高的主要原因是由于伴生放射性矿产资源中含有较高水平的天然放射性核素,在矿产资源开发过程中天然放射性核素从地层内部向外场所再迁移,会在废渣、废水等排放废物中富集,导致核素向环境释放和扩散,造成地表水、地下水及土壤环境污染,对环境和人体造成一定的不利影响。

针对伴生放射性矿产生的酸性放射性废水污染问题,目前技术采用“石灰调pH+曝气+混凝沉淀+过滤”的处置工艺,现使用技术未考虑伴生放射性污染问题,该工艺通过协同沉淀作用将废水中的U和其他重金属一并进行沉淀,将水中的U转移富集到沉淀渣中,经检测发现,单个铀系核素活度浓度超过《伴生放射性物料贮存及固体废物填埋辐射环境保护技术规范(试行)》(HJ 1114-2020)规定的1Bq/g,而且该工艺石灰用量较大,钙离子易于和酸性废水中的硫酸根形成不溶性沉淀,导致大量的沉淀渣成为伴生放射性固体废物,人为增加了伴生放射性固体废物的产生量,同时铀作为战略物资被忽视转移到固体废物中,造成资源浪费。

根据国家相关要求,伴生放射性固体废物填埋场应按照《伴生放射性物料贮存及固体废物填埋辐射环境保护技术规范(试行)》(HJ 1114-2020)进行选址、设计、建设运行及监护,要求均高于《一般工业固体废物贮存和填埋污染物控制标准》(GB18599-2020),不仅增加了贮存、填埋设施的建设成本,更给处置设施运行及辐射安全监管增加了难度和风险。

与此同时,我国是贫铀国家,铀作为我国的战略资源,对外依赖度超过70%,因此对伴生放射性矿山废水中铀进行富集回收意义重大。

伴生放射性矿山如何实现含铀废水处置产生的固体废物减量化及无害化、废水中铀分离及资源化利用、废水的达标排放,是亟需解决的问题。

发明内容

针对现有技术存在的不足,本发明目的在于提供一种伴生矿放射性酸性废水无害化治理及资源化利用的方法,以实现含铀废水处置产生的固体废物减量化及无害化、废水中铀分离及资源化利用、废水的达标排放等。

为了解决上述技术问题,本发明采用如下技术方案予以实现:

一种伴生矿放射性酸性废水无害化治理及资源化利用的方法,该方法能对含铀废水进行无害化处理并能回收铀;

该方法将含铀与其他金属的废水经过预氧化后,调节pH至弱碱性使废水中金属元素形成沉淀,同时利用沉淀吸附废水中的铀,然后利用CO

本发明包括如下技术特征:

具体的,该方法包括以下步骤:

步骤1,预氧化:在废水中加入氧化剂,同时在搅拌条件下进行预氧化得到预氧化原液;

步骤2,调节pH得到沉淀:在搅拌条件下,向步骤1得到的预氧化原液加入氢氧化钠调节pH至7.0~9.5,以将预氧化原液中的金属元素沉淀,得到沉淀并固液分离后,上清液直接排放;

步骤3,利用Na

步骤4,离子交换树脂吸附含U络合物:将步骤3得到的含U-CO

步骤5,Na

步骤6,淋洗:将步骤4中吸附后的饱和离子交换树脂,使用淋洗液进行淋洗后,离子交换树脂返回步骤4继续循环使用;

步骤7,回收固体U:将步骤6中淋洗后的淋洗液使用氢氧化钠搅拌调节pH至12.0以上,固液分离,固体回收利用。

具体的,所述步骤1中,氧化剂为次氯酸钠或过氧化氢;搅拌条件为150~1500rpm,搅拌时间为0.2~1h。

具体的,所述步骤2中,搅拌条件为150~1500rpm,得到的沉淀中包括U

具体的,所述步骤3中,Na

具体的,所述步骤4中,离子交换树脂为201×7型强碱性阴离子交换树脂。

具体的,所述步骤6中,淋洗液包括氯化钠溶液和/或盐酸溶液。

本发明与现有技术相比,具有以下有益技术效果:

本发明工艺将废水处理与U资源回收利用相结合,在满足废水达标排放要求的同时,降低固体废物产量及放射性活度,使产生的沉淀渣能够按照一般工业固体废物进行处置,降低贮存、填埋设施建设成本以及辐射安全监管难度,且可以实现铀资源化回收,具有非常重大的社会意义、经济意义和环境意义。

传统的化学沉淀法是酸性含铀溶液中加入大量的碱,沉淀其他重金属及铀离子,操作强度大,固体废物产量大,人为产生固体为伴生放射性废物,增加了贮存、填埋设施的建设成本,更给处置设施运行及辐射安全监管增加了难度和风险。本方案提出的新工艺,只需调节废水的pH,就能让废水中其它重金属沉淀,并利用重金属沉淀物吸附U,沉淀U,操作简单,固体产量小,且为一般工业固体废物,产生的弱碱性废水不会对环境造成二次污染。

本发明提出的新工艺,在废水处理中只用调节pH,就可以达到废水处理的目的,故可用于处理大量废水。

本发明利用CO

附图说明

图1为本发明方法的工艺流程图。

具体实施方式

本发明提供一种伴生矿放射性酸性废水无害化治理及资源化利用的方法,该方法的工艺流程如图1所示,含U与其他重金属的废水经过预氧化后,具体氧化剂为次氯酸钠、过氧化氢等;再通过调节pH至弱碱性使废水中Fe、Mn、Cu、Zn等其他金属形成沉淀,同时利用沉淀吸附水中的U,将大体量的废水处理问题转化为微量的固体废弃物处理问题;然后利用CO

本发明将化学沉淀法和吸附法相结合,利用废水中其它重金属沉淀物为吸附剂,吸附U,沉淀U;将大体积废水中的主要污染物U转移到少量的的固体废弃物中;为了达到沉淀为一般工业固体废物以及对U的回收利用,利用CO

具体包括以下步骤:

步骤1,预氧化:在废水中加入氧化剂,同时在150~1500rpm下搅拌0.2~1h进行预氧化得到预氧化原液;所述氧化剂为次氯酸钠(NaClO)或过氧化氢;

步骤2,调节pH得到沉淀:将步骤1得到的预氧化原液在150~1500rpm搅拌条件下加入氢氧化钠(NaOH)调节pH至7.0-9.5,静置沉淀或经设备固液分离后,清液可满足相关排放标准要求,可直接排放,同时得到含U和Fe、Mn、Cu、Zn等其他金属的沉淀,此时U为+6价,主要以UO

Fe

Cu

Zn

Mn

步骤3,利用Na

此时,碳酸根属于弱酸根,无法改变其他非放射性重金属生成的氢氧化物沉淀状态,而大量碳酸根的存在,可以促进上述反应式朝着稳定络合物的方向进行。

步骤4,离子交换树脂吸附含U络合物:将步骤3得到的含U-CO

含铀的碳酸钠溶液与树脂反正离子交换以及吸附作用,离子交换反应利用U与CO

4RCl+UO

步骤5,Na

步骤6,淋洗:将步骤4中吸附后的饱和离子交换树脂,使用淋洗液进行淋洗后,离子交换树脂返回步骤4继续循环使用;

淋洗液包括氯化钠溶液和/或盐酸溶液,氯化钠溶液的浓度为1%~10%(质量百分比)、盐酸溶液的浓度为0.5~5%;采用氯化钠溶液淋洗,或采用盐酸溶液淋洗,或采用氯化钠溶液和盐酸溶液依次淋洗;

使用高浓度的NaCl溶液,将吸附的UO(CO

4NaCl+R

步骤7,回收固体U:将步骤6中淋洗后的淋洗液使用氢氧化钠搅拌调节pH至12.0以上,固液分离,溶液中的三碳酸铀酰钠分解成为重铀酸钠,其反应式为:

2Na

固体满足《重铀酸盐技术条件》(EJ/T 803-93)标准,回收利用,清液返回步骤4。

以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。

实施例1:

本实施例中,采用某伴生放射性矿产生的酸性废水,进行伴生放射性酸性废水无害化治理及资源化利用,包括:

步骤1,按10ml/L的试剂用量加入次氯酸钠进行预氧化,在450rpm下搅拌0.5h使氧化完全;

步骤2,后加入NaOH(5g/L)调节至pH=7.5,静置12h;取30mL上清液检测元素含量,然后通过真空抽滤机抽滤得到沉淀;如表1所示,加入NaOH调至pH7.5沉淀后,上清液铀排放浓度满足《铀矿冶辐射防护和辐射环境保护规定》(GB 23727-2020),其他污染物满足《污水综合排放标准》(GB 8978-1996)。

表1pH7.5上清金属元素含量

步骤3,取50g沉淀用0.2L Na

表2 40℃洗5次后沉淀中金属元素含量

步骤4,将含U-CO

具体的,从步骤3得到的含U-CO

步骤5,Na

步骤6,将步骤4中吸附后的饱和离子交换树脂,使用淋洗液进行淋洗后,离子交换树脂返回步骤4继续循环使用;淋洗液为6%的氯化钠溶液;

步骤7,将步骤6中淋洗后的淋洗液使用氢氧化钠搅拌调节pH至13.0左右,固液分离后,对产生的固体进行分析,如表3,可知沉淀固体满足《重铀酸盐技术条件》(EJ/T803-93)标准。

表3沉淀固体含量分析

实施例2

该实施例与实施例1不同之处为:步骤3沉淀中U的溶出过程是在60℃下进行的,重复洗涤3次。

表4为沉淀在60℃用Na

表4 60℃洗3次后沉淀中金属元素含量

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号