首页> 中国专利> 稀疏频率编码抗干扰波形信号的相干积累方法

稀疏频率编码抗干扰波形信号的相干积累方法

摘要

本发明公开了一种稀疏频率编码抗干扰波形信号的相干积累方法,主要解决捷变频信号由于其相位非线性变化而无法使用传统相干积累方法进行积累的问题。其实现方案为:雷达发射多组稀疏频率编码信号,获取基带回波信号;按照载频大小对基带回波信号进行脉冲压缩并分类;对分类后的每组信号分别进行同频相干积累;对同频相干积累后的每组信号分别进行速度补偿;按照载频大小对速度补偿后的每组信号进行重排;根据重排后的信号构建距离参数优化的目标函数,求解该目标函数得到最优距离参数;利用最优距离参数对重排后的信号进行距离补偿,再进行IFFT,得到异频相干积累结果。本发明提升了捷变频雷达的抗干扰性能,可用于实现捷变频雷达的目标检测。

著录项

  • 公开/公告号CN114839606A

    专利类型发明专利

  • 公开/公告日2022-08-02

    原文格式PDF

  • 申请/专利权人 西安电子科技大学;

    申请/专利号CN202210471755.4

  • 申请日2022-04-29

  • 分类号G01S7/282(2006.01);G01S7/288(2006.01);G01S7/292(2006.01);G01S7/295(2006.01);G01S7/36(2006.01);G01S7/41(2006.01);

  • 代理机构陕西电子工业专利中心 61205;陕西电子工业专利中心 61205;

  • 代理人王品华;王喜媛

  • 地址 710071 陕西省西安市太白南路2号

  • 入库时间 2023-06-19 16:14:25

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-08-19

    实质审查的生效 IPC(主分类):G01S 7/282 专利申请号:2022104717554 申请日:20220429

    实质审查的生效

说明书

技术领域

本发明属于雷达技术领域,特别涉及一种抗干扰波形信号相干积累方法,可用于对捷变频抗干扰信号的目标检测。

背景技术

脉间频率捷变技术是指雷达发射信号的各脉冲载频按照随机或伪随机编码快速变化,使用该技术的雷达称为捷变频体制雷达。捷变频体制雷达在实际应用中具有一系列优势,如:降低被截获概率、提高抗干扰性能、增大探测距离等。因此,在日益复杂的电磁环境中,捷变频体制雷达具有十分广阔的应用前景。

但也正是由于其发射信号的脉冲载频随机捷变,使得回波信号的相位变化为非线性,与传统基于快速傅立叶变换FFT实现信号相干积累的算法不兼容,所以无法通过传统相干积累方法实现目标检测。

为了对捷变频信号进行相干积累,一些公开发表的文献中对其进行了分析与研究。西安电子科技大学在申请号为201811125895.6的专利文献中提出一种基于二维重构算法的目标检测方法,该方法采用载频随机捷变的脉冲信号,通过搜索目标场景的稀疏性,构建与回波信号对应的二维联合字典矩阵,采用二维重构的方法对捷变频信号进行相干积累,得到目标的速度与距离信息。该方法的不足之处在于,构建二维联合字典矩阵时需要对距离-速度区域人为划分网格,容易出现网格失配的问题,导致真实目标参数与网格格点之间产生较大误差。

田瑞琦在其发表的博士毕业论文“泛探雷达微弱目标检测关键技术研究”(长沙:国防科技大学,2018)中提出一种基于同频相参与频率重排的捷变频信号目标积累方法,该方法采用多个脉组进行积累,利用同频及异频两次相干积累最终实现捷变频信号的相干积累。该方法的不足之处在于,一个脉组内的各脉冲载频必须采用随机步进频的捷变方式,波形设计自由度低,在实际应用中的抗干扰性能较差。

发明内容

本发明的目的在于针对上述技术中存在的不足,提出一种稀疏频率编码抗干扰波形信号的相干积累方法,以通过设计发射波形频率编码方式,提高捷变频体制雷达的抗干扰性能,通过对捷变频信号在异频相干积累时的参数优化,避免因人为划分网格而出现的网格误差问题,提升捷变频体制雷达的目标检测性能。

为实现上述目的,本发明的技术方案包括如下:

(1)雷达发射多组稀疏频率编码信号,获取该发射信号的基带回波信号s;

(2)按照载频大小对基带回波信号s进行脉冲压缩并分类,得到Q组分类后的信号{S

(3)对Q组分类后的信号{S

(4)对Q组同频相干积累后的信号{Y

(5)将Q组速度补偿后信号{Z

(6)将频率补偿为均匀频率间隔,利用参数优化方法得到最优距离参数R

(6a)设r为需要优化的距离参数,利用该距离参数构建距离补偿函数:

(6b)利用距离补偿函数H

(6c)根据距离补偿后的待优化信号x构建目标函数:

其中,i=0,1,...,N-1为重排后的频率序号,N为一个脉组中包含的脉冲总数,x

(6d)利用基于BFGS的梯度下降方法对(6c)中的目标函数进行优化求解,解得距离参数r,该距离参数r即为最优距离参数R

(7)将最优距离参数R

本发明与现有技术相比,具有如下优点:

1.本发明由于在对发射波形捷变模式的设计中,对每个脉组中各脉冲的载频采用稀疏频率编码的方式,相对于部分已有波形的捷变自由度较高,降低了被干扰机截获的概率,提高了抗干扰性能,使得本发明的适用范围更广。

2.本发明通过对捷变频回波信号进行分类处理,在异频相干积累时通过参数优化方法优化距离参数,无需先验信息划分网格,避免了因人为划分网格而出现的网格误差问题;同时利用距离参数构建距离补偿函数,得到均匀频率间隔的信号,解决了现有技术中捷变频信号在异频相干积累时因非均匀频率间隔引起的距离项相位非相干的问题,提升了捷变频体制雷达的目标检测性能。

附图说明

图1为本发明的实现流程图;

图2为采用现有基于同频相参与频率重排的捷变频信号目标积累方法进行稀疏频率编码信号相干积累的结果图;

图3为采用现有压缩感知方法对稀疏频率编码信号进行稀疏重构的结果图;

图4为采用本发明方法对距离参数进行优化的距离参数优化曲线图;

图5为采用本发明方法进行稀疏频率编码信号相干积累的结果图。

具体实施方式

下面结合附图对本发明的实施例和效果作进一步详细描述。

参照图1,本发明稀疏频率编码抗干扰波形信号的相干积累方法,包括如下步骤:

步骤1,雷达发射多组稀疏频率编码信号,获取该发射信号的基带回波信号。

假设一个相干处理间隔内雷达发射M组脉冲,每组内均包含N个脉冲,同一个脉组内所有脉冲的脉宽、带宽、重频固定,频率在一定的范围内随机跳变,f={f

雷达发射上述多组稀疏频率编码信号,获取该发射信号的基带回波信号:

其中,s

步骤2,按照载频大小对基带回波信号进行脉冲压缩处理并分类,得到Q组分类后的信号{S

2.1)对基带回波信号进行脉冲压缩处理,得到脉冲压缩后的信号:

其中,S'

2.2)按照载频大小对脉冲压缩后的信号进行分类,每一类中仅保留频率相同的脉压结果,得到Q组分类后的信号,其中第q组分类后的信号为:

其中,q=0,1,...,Q-1为组号,Q为分组总数;

由于对脉冲压缩后的信号进行分类时是按照载频大小进行分类的,由此可知在分类后得到的分组总数与一个脉组内的脉冲个数是相同的,即Q=N,并且组号q与脉冲序号n也是一一对应的。

步骤3,对Q组分类后的信号分别进行同频相干积累,得到Q组同频相干积累后的信号。

以载频f

利用线性调频Z变换CZT在实现速度域尺度归一化的同时实现同频相干累积,得到Q组同频相干积累后的信号,其中第q组同频相干积累后的信号为:

其中,k=0,1,...,M

步骤4,对Q组同频相干积累后的信号分别进行速度补偿,得到Q组速度补偿后的信号。

4.1)在经过CZT之后,目标的能量被积累于一点,该目标点的横坐标为

4.2)根据中心载频f

4.3)利用速度补偿函数对H

其中,

步骤5,获得频率-速度二维信号Z'。

将Q组速度补偿后的信号中的能量峰值所在列向量取出,按照载频大小对其进行排列组合,得到频率重排后的频率-速度二维信号Z':

其中,F

步骤6,将频率补偿为均匀频率间隔,利用参数优化方法得到最优距离参数R

由步骤5中得到的频率-速度二维信号Z'可知,在频率-速度平面内,能量峰值在第k

6.1)利用距离参数构建距离补偿函数:

6.2)利用距离补偿函数H

其中,x

6.3)以最小波形熵作为最优判断准则,根据距离补偿后的待优化信号x构建目标函数:

其中,

6.4)利用基于BFGS的梯度下降方法对(6.3)中的目标函数进行优化求解,解得距离参数r,该距离参数r即为最优距离参数R

步骤7,将最优距离参数R

其中,η为高分辨单元序号,

以下通过仿真实验,对本发明的技术效果作进一步说明:

一、仿真参数

假设一个相干处理间隔内雷达发射M=16组脉冲,每个脉组内均包含N=16个脉冲,每个脉冲均为线性调频信号,中心频率f

二、仿真内容

仿真1,在上述仿真实验的条件下,采用现有基于同频相参与频率重排的捷变频信号目标积累算法对稀疏频率编码信号进行相干积累,其相干积累结果图如图2所示。

仿真2,在上述仿真实验的条件下,采用现有压缩感知方法对稀疏频率编码信号进行稀疏重构,其结果图如图3所示。

仿真3,在上述仿真实验的条件下,采用本发明方法对稀疏频率编码信号进行相干积累,得到的距离参数优化曲线如图4所示,相干积累结果图如图5所示。

三、仿真结果分析

从图2可见,采用现有基于同频相参与频率重排的捷变频信号目标积累算法得到的相干积累结果,在距离向产生了高的旁瓣和栅瓣,因此无法得到目标真实的距离和速度信息。

从图3可见,采用现有压缩感知方法对稀疏频率编码信号进行稀疏重构得到的结果,由于网格失配问题,目标的真实参数与预先设置的距离-速度网格并不匹配,导致无法准确重构出真实目标。

从图4可见,本发明方法对目标距离参数进行参数优化,其距离参数优化曲线表现出良好的收敛性,且搜索迭代次数较少,运算量较小。

从图5可见,采用本发明方法得到的相干积累结果能够有效实现捷变频信号的相干积累,并且得到的距离和速度信息符合仿真条件下的分辨率要求,可以实现捷变频信号的目标检测。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号