首页> 中国专利> 基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法

基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法

摘要

本发明公开了一种基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法,包括:采集入口压力信号,基于入口压力信号的变化率与喷射器喷气量变化规律相同,将入口压力信号作为喷气量变化信息;利用RBF神经网络建立喷气量预测模型并进行训练,得到喷气量计算模型求解实时喷气量;基于ADRC控制器,将实时喷气量与目标喷气量做差,并通过TD跟踪微分器计算误差,差值经过非线性控制律NLSEF输出基于误差的控制量,叠加扩张观测器ESO输出的实时总扰动补偿,给出下次喷气脉宽指令以输出目标喷气量,并迭代前述步骤。该方法克服了传统PID控制的超调大,控制速度慢等问题,实现以在线感知信息为反馈的实时闭环控制。

著录项

  • 公开/公告号CN114839869A

    专利类型发明专利

  • 公开/公告日2022-08-02

    原文格式PDF

  • 申请/专利权人 哈尔滨工程大学;

    申请/专利号CN202210376124.4

  • 发明设计人 董全;魏代君;王迪;杨晰宇;

    申请日2022-04-11

  • 分类号G05B13/04(2006.01);

  • 代理机构哈尔滨市阳光惠远知识产权代理有限公司 23211;

  • 代理人刘景祥

  • 地址 150000 黑龙江省哈尔滨市南岗区南通大街145号

  • 入库时间 2023-06-19 16:14:25

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-12-27

    授权

    发明专利权授予

  • 2022-08-19

    实质审查的生效 IPC(主分类):G05B13/04 专利申请号:2022103761244 申请日:20220411

    实质审查的生效

  • 2022-08-02

    公开

    发明专利申请公布

说明书

技术领域

本发明涉及动力能源技术领域,特别涉及一种基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法。

背景技术

随着排放法规的日益严苛、各类主流双燃料发动机技术无法同时满足动力性与排放性的要求,以及发动机电控技术迅猛发展成为内燃机行业的主导技术之一,这为缸内直喷双燃料发动机提供了极其优越的政策基础、广阔的市场需求以及巨大的发展潜力,导致天然气缸内直喷技术成为天然气发动机行业技术发展的必经之路。

由于喷射器内部复杂的气动-液压-电气结构导致其工作特性的变化规律十分复杂,其喷射特性的不可知性成为目前限制天然气发动机喷气量闭环控制技术发展的瓶颈性问题。目前对于天然气喷射器喷射状态监测方法一般是动量法,通过测试高压气体脉冲射流的冲击力获取气体射流的动量流,实现了气体射流出口动量的测试。动量法虽然可以高信噪比的描绘出喷气规律型线,但是由于喷雾的动量损失无法实现循环喷气量的精确测量,因此基于动量法的在线测量喷气量的方法无法应用于天然气喷气量的控制当中。

目前对于喷射器喷射过程的在线监测技术大都是基于液体喷射器的。例如直接在喷油器内部安装了体积流量传感器和压力传感器来监测喷油情况,实现对喷油的精确控制。但是目前针对气体喷射器的在线测量方法的研究却未见报道。

因此,大多数天然气发动机采用事先标定好的MAP图来实现发动机不同工况下喷气量的控制。然而在实际的发动机工作过程中,由于实际的工作条件与实验环境有一定差别,而喷射器在不同环境喷射特性不同,这也导致传统的基于MAP的控制策略难以实现喷气量的精确控制。

发明内容

本发明旨在至少在一定程度上解决相关技术中的技术问题之一。

为此,本发明的目的在于提出一种基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法,该方法克服了传统PID控制的超调大,控制速度慢等问题,实现以在线感知信息为反馈的实时闭环控制。

为达到上述目的,本发明实施例提出了基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法,包括以下步骤:步骤S1,在天然气喷射器入口处安装压力传感器,以采集入口压力信号;步骤S2,基于入口压力信号的变化率与喷射器喷气量变化规律相同,将所述入口压力信号作为喷气量变化信息;步骤S3,利用RBF神经网络建立喷气量预测模型,并利用所述喷气量变化信息对所述喷气量预测模型进行训练,得到喷气量计算模型;步骤S4,以当前入口压力信号为所述喷气量计算模型的输入,求解实时喷气量;步骤S5,基于ADRC控制器,将所述实时喷气量与目标喷气量做差,并通过TD跟踪微分器计算误差,差值经过非线性控制律NLSEF输出基于误差的控制量,叠加扩张观测器ESO输出的实时总扰动补偿,给出下一次喷气脉宽信号以输出目标喷气量,迭代执行步骤S4-步骤S5完成喷气量的实时闭环控制。

本发明实施例的基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法,通过利用神经网络建议喷气量计算模型,通过输入喷射器入口压力信号,该模型可以计算相应的实时喷气量,实现喷气量的在线反馈;

通过跟踪微分器来过渡超调过大以及系统稳定性低的问题,缓和发动机的工作环境;通过ESO扩张观测器来观测喷油器系统引入的输入扰动,系统扰动等,提高系统的精确性和鲁棒性;用非线性控制律代替传统PID的参数组合方式,消除喷气量在线闭环控制的静态误差;与现有喷气量PID闭环控制策略相比,具有超调小,控制速度快,稳定性好的优点

另外,根据本发明上述实施例的基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法还可以具有以下附加的技术特征:

进一步地,在本发明的一个实施例中,所述步骤S3中,根据所述喷气量变化信息确定喷气量变化、喷气始点的喷气压力以及入口压力最大跌落值的对应关系,将所述喷气压力与所述入口压力最大跌落值作为所述喷气量预测模型的输入,将喷气量变化作为所述喷气量预测模型的输出,其中,所述对应关系为喷气量及喷气压力与入口压力跌落值正相关。

进一步地,在本发明的一个实施例中,所述步骤S3具体包括:步骤S301,对所述喷气量变化、所述喷气始点的喷气压力以及所述入口压力最大跌落值进行归一化处理;步骤S302,选取RBF神经网络中的隐含层的激活函数构建所述喷气量预测模型;步骤S303,利用归一化后的喷气量变化、喷气始点的喷气压力以及入口压力最大跌落值划分为训练集和测试集,利用所述训练集对所述喷气量预测模型进行训练,得到所述喷气量计算模型,并利用所述测试集进行验证。

进一步地,在本发明的一个实施例中,所述喷气量计算模型具体为:

其中,y

进一步地,在本发明的一个实施例中,所述步骤S5具体包括:步骤S501,引入所述TD跟踪微分器使所述实时喷气量快速跟踪所述目标喷气量,并提取微分信号;步骤S502,利用所述扩张观测器ESO跟踪天然气喷射器的实时总扰动估计值、第一喷气量扰动信号观测值和第二喷气量扰动信号观测值;步骤S503,通过非线性控制律NLSEF输出所述第一喷气量扰动信号观测值和所述第二喷气量扰动信号观测值的控制量;步骤S504,将所述控制量叠加所述实时总扰动估计值进行补偿,得到脉宽信号,并将所述脉宽信号输出至喷射器电磁阀,以驱动喷射器进行下次喷射,迭代执行所述步骤S4和步骤S501-S504,完成喷气量的实时闭环控制。

进一步地,在本发明的一个实施例中,所述TD跟踪微分器的控制跟踪过程具体为:

其中,m

进一步地,在本发明的一个实施例中,

所述喷气量状态观测器ESO的跟踪过程具体为:

其中,u

进一步地,在本发明的一个实施例中,所述非线性控制律NLSEF的控制量具体求解过程为:

其中,u

本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:

图1是本发明一个实施例的基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法的流程图;

图2是本发明一个实施例的实验装置布置示意图;

图3是本发明一个实施例的神经网络输入输出图;

图4是本发明一个实施例的喷气量计算模型构建示意图;

图5是本发明一个实施例的ADRC控制框图;

图6是本发明一个实施例的本发明实施例提出的基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法的具体执行示意图。

具体实施方式

下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。

下面参照附图描述根据本发明实施例提出的基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法。

图1是本发明一个实施例的基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法的流程图。

如图1所示,该基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法包括以下步骤:

在步骤S1中,在天然气喷射器入口处安装压力传感器,以采集入口压力信号。

具体地,如图2所示,在天然气喷射器入口处安装压力传感器,通过电荷放大器对其信号进行放大,最后通过信号采集模块读取入口压力信号。

在步骤S2中,基于入口压力信号的变化率与喷射器喷气量变化规律相同,将入口压力信号作为喷气量变化信息。

具体地,由图3可以看出,入口压力信号的变化率与喷射器喷气量有相同变化规律,因此可以初步确定喷射器入口压力信号中包含着喷气量的信息,故可以将入口压力信号作为喷气量变化信息。

在步骤S3中,利用RBF神经网络建立喷气量预测模型,并利用喷气量变化信息对喷气量预测模型进行训练,得到喷气量计算模型。

进一步地,在本发明的一个实施例中,步骤S3具体包括:

步骤S301,对喷气量变化、喷气始点的喷气压力以及入口压力最大跌落值进行归一化处理;

步骤S302,选取RBF神经网络中的隐含层的激活函数构建喷气量预测模型;

步骤S303,利用归一化后的喷气量变化、喷气始点的喷气压力以及入口压力最大跌落值划分为训练集和测试集,利用训练集对喷气量预测模型进行训练,得到喷气量计算模型,并利用测试集进行验证。

具体地,如图4所示,本发明实施例选用RBF神经网络建立喷气量预测模型。根据喷气量变化信息确定喷气量变化m

式中,R(x

RBF神经网络的输出为(即喷气量计算模型):

其中,y

本发明实施例选择的训练集为全部样本的70%,验证集和测试及均为样本的15%,训练函数选择L-M(Levenberg-Marquardt),最优隐含层节点数为15。在此不做具体限定,本领域技术人员可根据实际情况进行适应性调整。

需要说明的是,本发明实施例还通过均方根误差(RMSE)与回归分析决定系数R评价喷气量计算模型性能,其中,

均方根误差定义为:

计算喷射器全工况范围内的RMSE=2.32mg,回归分析的决定系数R=0.99886,所以喷气量计算模型精度满足要求可用于喷气量的在线反馈信息。

在步骤S4中,以当前入口压力信号为喷气量计算模型的输入,求解实时喷气量。

在步骤S5中,基于ADRC控制器,将实时喷气量与目标喷气量做差,并通过TD跟踪微分器计算误差,差值经过非线性控制律NLSEF输出基于误差的控制量,叠加扩张观测器ESO输出的实时总扰动补偿,给出下一次喷气脉宽信号以输出目标喷气量,迭代执行步骤S4-步骤S5完成喷气量的实时闭环控制。

进一步地,在本发明的一个实施例中,步骤S5具体包括:

步骤S501,引入TD跟踪微分器使实时喷气量快速跟踪目标喷气量,并提取微分信号;

步骤S502,利用扩张观测器ESO跟踪天然气喷射器的实时总扰动估计值、第一喷气量扰动信号观测值和第二喷气量扰动信号观测值;

步骤S503,通过非线性控制律NLSEF输出第一喷气量扰动信号观测值和第二喷气量扰动信号观测值的控制量;

步骤S504,将控制量叠加实时总扰动估计值进行补偿,得到脉宽信号,并将脉宽信号输出至喷射器电磁阀,以驱动喷射器进行下次喷射,迭代执行步骤S4和步骤S501-S504,完成喷气量的实时闭环控制。

也就是说,如图5所示,本发明实施例步骤S5基于ADRC控制器,以预设的目标喷气量为目标值,以喷油器喷气脉宽为系统输出,以喷射器入口压力信号为直接反馈量,经过喷气量神经网络计算模型计算得到喷气量,以此为间接反馈量。

进一步地,步骤S5中利用的ADRC控制器主要通过三种方式来改善传统PID闭环控制喷油量的控制效果,具体如下

(1)安排过渡过程(即步骤S501)

由于喷气量初始误差,在应用传统PID算法时,当控制器增益高的话就很容易引起超调,如果提前安排过渡过程,让指令信号慢一点变化,就能得到更好一点的控制效果。引入TD跟踪微分器,TD跟踪微分器以目标喷气量为输入m

其中,m

因TD跟踪微分器的引入,使得在目标喷气量m发生突变时,对误差的导数进行过渡,使得喷气脉宽输出不会因为误差导数过大而突变,增加控制系统的鲁棒性,减少对喷射器针阀的损伤。

(2)扩张状态观测器ESO(即步骤S502)

为使喷气量扩张状态观测器ESO的状态变量跟踪系统的状态变量,本发明实施例设计的喷气量状态观测器ESO如下:

其中,u

(3)非线性控制律NLSEF(即步骤S503和步骤S504)

喷气量扩张状态观测器ESO实时得到总扰动的估计值,如果在控制率中予以补偿,则可实现主观扰动的功能,因此,设置控制量的NLSEF方程为:

其中,u

自抗扰算法针对PID中稳态误差与比例系数成反比的缺陷,提出用非线性反馈的方式来减小稳态误差,可以有效抑制指数级的量级抑制扰动。

基于上述,如图6所示,步骤S5的具体执行过程为:通过叠加系统的总扰动补偿,对喷射器电磁阀输出脉宽信号u,驱动天然气喷射器喷气,通过建立好的神经网络喷气量模型计算实时喷气量,然后与目标喷气量做差,并通过TD过渡环节计算误差,差值经过非线性控制率环节输出基于误差的控制量u

下面通过一个具体实施例对本发明实施例提出的基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法的整体工作原理进行说明:

步骤一,如图2所示,分别有三个部分组成,燃料供给系统,包括气轨、轨压控制装置等等,其次是喷射器以及入口压力传感器,最后是信号采集模块,入口压力信号经放大器放大至采集卡获得入口压力信号;

步骤二,通过图4搭建流程图,根据线下实验测得的喷气量以及本发明实施例采集的入口压力信号可以建立喷气量神经网络计算模型,此模型可以实现喷气量的在线监测;

步骤三,如图6所示,根据已建立的神经网络,以入口压力信号为输入,可计算出实时的喷气量。

步骤四,如图6所示,将实时喷气量作为TD跟踪微分器的输入,使得在目标喷气量m

步骤五,如图6所示,通过非线性控制律NLSEF输出基于(m

步骤六,如图6所示,将u

步骤七,重复步骤三至步骤六,实现喷气量的实时闭环控制。

根据本发明实施例提出的基于高压天然气循环喷气量实时检测的ADRC喷气量闭环控制方法,具有以下有益效果:

(1)只需在原有天然气发动机基础上安装一个入口压力传感器,由于工作环境较稳定,所以压力传感器不易损坏,寿命长,经济性好;

(2)通过利用神经网络建议喷气量计算模型,通过输入喷射器入口压力信号,该模型可以计算相应的实时喷气量,实现喷气量的在线反馈;

(3)通过跟踪微分器来过渡超调过大以及系统稳定性低的问题,缓和发动机的工作环境;通过ESO扩张观测器来观测喷油器系统引入的输入扰动,系统扰动等,提高系统的精确性和鲁棒性;用非线性控制律代替传统PID的参数组合方式,消除喷气量在线闭环控制的静态误差;

(4)与现有喷气量PID闭环控制策略相比,具有超调小,控制速度快,稳定性好的优点。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号