首页> 中国专利> 基于板单元变形分解的空间结构性能量化分析方法

基于板单元变形分解的空间结构性能量化分析方法

摘要

本发明属于力学分析技术领域,公开了一种基于板单元变形分解的空间结构性能量化分析方法,包括以下步骤:在空间直角坐标系下构建板单元的空间变形,采用正交分解理论得到板单元基本位移和基本变形的基向量,进而得到板单元的完备坐标基矩阵;建立三维板空间结构模型,采用板单元对板结构进行划分,得到板单元在受到任意载荷工况下产生任意位移或变形后的节点坐标位移向量;板单元在受到任意载荷工况下产生任意位移或变形后的投影系数向量;得到板单元在受到任意载荷工况下产生的基本位移信息和基本变形信息,判别出板单元在受到任意载荷工况下产生的主要位移或主要变形及次要位移或主要变形,从而实现对板空间结构的变形分解与变形的量化分析。

著录项

  • 公开/公告号CN114781087A

    专利类型发明专利

  • 公开/公告日2022-07-22

    原文格式PDF

  • 申请/专利权人 郑州大学;

    申请/专利号CN202210426377.8

  • 申请日2022-04-22

  • 分类号G06F30/17;G06F30/20;G06F111/04;G06F119/14;

  • 代理机构郑州大通专利商标代理有限公司;

  • 代理人蔡少华

  • 地址 450001 河南省郑州市高新技术开发区科学大道100号

  • 入库时间 2023-06-19 16:06:26

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-07-22

    公开

    发明专利申请公布

说明书

技术领域

本发明属于力学分析技术领域,涉及一种基于板单元变形分解的空间结构性能量化分析方法。

背景技术

板单元在分析板结构时具有良好的应用性,其自由度少、建模简单,在工程分析与设计中具备广泛的应用性。目前,板构件的设计方法多是针对其宏观变形,如抗剪、抗弯等进行设计,而对于如何有效识别板的基本变形类型,对于结构的性能分析与优化设计具有重要意义。

目前基于有限元的板单元分析结果所给出的数据皆为微观上的信息,如应力和应变,而板结构在外界作用下发生的是综合变形,单一的基本变形信息被包含在综合变形中,无法直观有效地用应力、应变等微观层面的信息表示出来,因此对板单元的总变形进行变形分解与识别具有重要意义。

现有的变形分解方法主要是针对实体单元或平面单元的变形分解,而目前的结构设计中,板单元相较于实体单元或平面单元应用的范围更加广泛,具有建模简单,计算量小等优势。因此,需要提出一种针对板单元的新的变形分解方法,能够在满足精度的前提下识别出结构的宏观变形,同时减小计算量。目前,基于板单元变形分解的空间结构性能量化分析方法尚未有报道。

发明内容

本发明的目的在于提供一种基于板单元变形分解的空间结构性能量化分析方法,能够识别出板单元的主要基本位移或变形及次要的基本位移或变形,同时可以对板单元综合变形中的基本位移或变形进行量化识别。

为实现上述目的,本发明采用以下技术方案:

一种基于板单元变形分解的空间结构性能量化分析方法,包括以下步骤:

步骤1:在空间直角坐标系下构建板单元的空间变形,采用正交分解理论得到板单元基本位移和基本变形的基向量,进而得到板单元的完备坐标基矩阵;

步骤2:建立三维板空间结构模型,采用板单元对板空间结构进行划分,得到空间直角坐标系中板单元的节点坐标值和板单元在受到任意载荷工况下产生任意位移或变形后的节点坐标值,进而得到板单元在受到任意载荷工况下产生任意位移或变形后的节点坐标位移向量;

步骤3:将板单元在受到任意载荷工况下产生任意位移或变形后的节点坐标位移向量投影到完备坐标基矩阵上,得到板单元在受到任意载荷工况下产生任意位移和变形后的投影系数向量;

步骤4:依据板单元在受到任意载荷工况下产生任意位移或变形后的投影系数向量,得到板单元在受到任意载荷工况下产生的基本位移信息和基本变形信息,判别出板单元在受到任意载荷工况下产生的主要位移或变形及次要位移或变形,从而实现对空间板结构的变形分解与变形的量化识别。

进一步地,所述板单元有节点1、节点2、节点3和节点4四个节点,板单元的长、宽、高分别用l、k、h表示,其中a=k/l,b=h/l;所述板单元的空间变形是由X轴向刚体平动位移、Y轴向刚体平动位移、Z轴向刚体平动位移、X轴向拉压变形、Y方向拉压变形、 XOY平面内绕X轴弯曲变形、XOY平面内绕Y轴弯曲变形、YOZ平面内绕Y轴弯曲变形、XOZ平面内绕X轴弯曲变形、XOY平面内剪切变形、YOZ平面内剪切变形、XOZ平面内剪切变形、绕Z轴扭剪变形、XOY面刚体转动位移、XOZ面刚体转动位移以及YOZ 面刚体转动位移共16种基本位移和基本变形叠加组合而成;

所述板单元基本位移和变形的基向量为U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

由上述板单元基本位移和基本变形的基向量U

进一步地,所述空间直角坐标系中板单元的节点坐标值为d

d

所述板单元在受到任意载荷工况下产生任意位移或变形后的节点坐标值为d

d

由d

进一步地,步骤3具体为:

任一板单元的节点坐标位移向量d

将上式转化为k=U

其中,U

进一步地,所述步骤4具体包括:

将板单元在受到任意载荷工况下产生任意位移或变形后的投影系数向量进行刚柔分离,分别得到板单元在受到任意载荷工况下产生基本位移信息和基本变形信息;

分别对上述两种分量信息中投影系数的绝对值进行比较,投影系数绝对值最大的判定为板单元的主要位移或主要变形,以此类推,投影系数绝对值次大的判定为板单元的主要位移或主要变形。

进一步地,所述板单元X轴向拉压变形的投影系数为正值时,表示板单元在X轴向的变形为受拉变形,板单元X轴向拉压变形的投影系数为负值时,表示板单元在X轴向的变形为受压变形。

相比现有技术,本发明的有益效果在于:

本发明通过正交分解理论法构造板单元基本位移或变形的基向量,进而构造出完备坐标基矩阵,在对板结构的综合变形进行变形分解后,能够识别出板单元的主要基本位移或变形及次要的基本位移或变形,表明基于板单元变形分解的空间结构性能量化分析方法的正确性和优越性,同时可以对板单元综合变形中的基本位移或变形进行量化识别,更加准确地判定板结构的受力情况和变形程度,进而为板结构的优化设计和事故分析提供理论依据;另外,本发明基于正交分解理论法对板结构进行变形分解可不受板结构单元划分大小的限制,可以在结构划分为大单元时同样适用,相比于传统的有限元应力分析方法,大大减少了计算工作量。

附图说明

图1为本发明基于板单元变形分解的空间结构性能量化分析方法的流程示意图。

图2为本发明中在空间直角坐标系下四节点板单元的示意图。

图3为本发明中在空间直角坐标系下四节点板单元X,Y,Z三个方向的坐标示意图。

图4为本发明中在空间直角坐标系下四节点板单元四侧面面外转角示意图。

图5为本发明中在空间直角坐标系下板单元X轴向刚体平动位移示意图。

图6为本发明中在空间直角坐标系下板单元Y轴向刚体平动位移示意图。

图7为本发明中在空间直角坐标系下板单元Z轴向刚体平动位移示意图。

图8为本发明中在空间直角坐标系下板单元X轴向拉压变形示意图。

图9为本发明中在空间直角坐标系下板单元Y轴向拉压变形示意图。

图10为本发明中在空间直角坐标系下板单元XOY平面内绕X轴弯曲变形示意图。

图11为本发明中在空间直角坐标系下板单元XOY平面内绕Y轴弯曲变形示意图。

图12为本发明中在空间直角坐标系下板单元YOZ平面内绕Y轴弯曲变形示意图。

图13为本发明中在空间直角坐标系下板单元XOZ平面内绕X轴弯曲变形示意图。

图14为本发明中在空间直角坐标系下板单元XOY平面内剪切变形示意图。

图15为本发明中在空间直角坐标系下板单元YOZ平面内剪切变形示意图。

图16为本发明中在空间直角坐标系下板单元XOZ平面内剪切变形示意图。

图17为本发明中在空间直角坐标系下板单元绕Z轴向扭剪变形示意图。

图18为本发明中在空间直角坐标系下板单元XOY面刚体转动位移示意图。

图19为本发明中在空间直角坐标系下板单元XOZ面刚体转动位移示意图。

图20为本发明中在空间直角坐标系下板单元YOZ面刚体转动位移示意图。

图21为本发明中实例一中四边固支板模型示意图。

图22为本发明中实例二中四边简支板模型示意图。

具体实施方式

以下实施例用于说明本发明,但不用来限定本发明的保护范围。若未特别指明,实施例中所用技术手段为本领域技术人员所熟知的常规手段。

图1示出了本发明基于板单元变形分解的空间结构性能量化分析方法的流程示意图。设任一个四节点板单元,其在空间直角坐标系下的示意图如图2所示,其在在空间直角坐标系下的16种空间变形如图3~14所示。板单元有节点1、节点2、节点3和节点4四个节点,板单元具有节点1、节点2、节点3和节点4的X、Y、Z三个方向的坐标x

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

由上述板单元基本位移和基本变形的基向量U

建立三维空间板结构模型,采用板单元对板结构进行划分,空间直角坐标系中板单元的节点坐标值为d

d

板单元在受到任意载荷工况下产生任意位移或变形后的节点坐标值为d

d

由d

任一板单元的节点坐标位移向量d

将上式转化为k=U

其中,U

将板单元在受到任意载荷工况下产生任意位移或变形后的投影系数向量进行刚柔分离,也即对变形分解结果进行刚柔分离,分别得到板单元在受到任意载荷工况下产生基本位移信息和基本变形信息;分别对上述两种分量信息中投影系数的绝对值进行比较,投影系数绝对值最大的判定为板单元的主要位移或主要变形,以此类推,投影系数绝对值次大的判定为板单元的主要位移或次要变形,从而实现对空间板结构的变形分解与变形的量化识别。

其中,所述板单元X轴向拉压变形的投影系数为正值时,表示板单元在X轴向的变形为受拉变形,板单元X轴向拉压变形的投影系数为负值时,表示板单元在X轴向的变形为受压变形。

刚体转动位移误差分析

刚体转动位移为非线性位移,进行线性分解时会产生误差,即板单元刚体转动位移基向量不仅会在刚体转动位移基向量上存在投影系数,还会在其他位移和变形基向量上存在投影系数,与理论情况存在误差,故还需要对板单元刚体转动位移在其他变形和位移基向量上投影系数数值大小进行误差分析,判断刚体转动位移是否影响计算精度。

设长方体板单元的长宽高分别为l,k,h,取单元的中点为坐标原点,沿其长宽高方向分别为X,Y,Z轴,对XOY面刚体转动位移、YOZ面刚体转动位移及XOZ面刚体转动位移误差进行分析。

(1)XOY平面刚体转动位移误差分析

当板单元在XOY平面从Z轴正向观察,逆时针旋转θ后,单元节点的坐标位移向量为:

将单元的转动位移向量投影到已经构造得到的完备坐标基矩阵上,单元的转动位移向量仅在X轴向拉压变形基向量、Y轴向拉压变形基向量和XOY面刚体转动位移基向量上有投影,在其他基本位移和基本变形基向量上的投影系数为0。因此单元刚体转动位移的坐标位移向量投影得到的16个约束方程简化为3个独立的约束方程,求解结果如下所示:

其中:a=k/l。

对方程组求解,可得:

对k

可以看出当θ趋近于0时,k

(2)YOZ平面刚体转动位移误差分析

当板单元在YOZ平面从X轴正向观察,逆时针旋转γ后,单元节点的坐标位移向量为:

将单元的转动位移向量投影到已经构造得到的完备坐标基矩阵上,单元的转动位移向量仅在Y轴向拉压变形基向量、YOZ面剪切变形基向量和YOZ面刚体转动位移基向量上有投影,在其他基本位移和基本变形基向量上的投影系数为0。因此单元刚体转动位移的坐标位移向量投影得到的16个约束方程简化为3个独立的约束方程,求解结果如下所示:

其中:a=k/l,b=h/l。

对方程组求解,可得:

对k

可以看出当γ趋近于0时,k

(2)XOZ平面刚体转动位移误差分析

当板单元在XOZ平面从Y轴正向观察,逆时针旋转β后,单元节点的坐标位移向量为:

将单元的转动位移向量投影到已经构造得到的完备坐标基矩阵上,单元的转动位移向量仅在X轴向拉压变形基向量、XOZ面剪切变形基向量和XOZ面刚体转动位移基向量上有投影,在其他基本位移和基本变形基向量上的投影系数为0。因此单元刚体转动位移的坐标位移向量投影得到的16个约束方程简化为3个独立的约束方程,求解结果如下所示:

其中:a=k/l,b=h/l。

对方程组求解,可得:

对k

可以看出当β趋近于0时,k

实施例一

如图21所示,以四边固支板为例,其中板的截面尺寸为4200mm×4200mm×200mm(长×宽×高),其厚跨比为h/l

A1号单元的中心坐标为(100mm,100mm,100mm),A2号单元的中心坐标为(1100mm,1100mm,100mm),A3号单元的中心坐标为(2100mm,2100mm,100mm)。

利用有限元分析得出A1、A2、A3号单元采用板单元的节点位移向量分别为:

d

d

d

对变形分解结果进行刚柔分离,将X轴向刚体平动位移、Y轴向刚体平动位移、Z轴向刚体平动位移、YOZ面刚体转动位移、XOZ面刚体转动位移和XOY面刚体转动位移这 6种基本刚体位移同基本变形分别进行考虑。得到板A1,A2,A3单元的基本位移分解结果分别如表1、3、5所示,基本变形分解结果分别如表2、4、6所示。

表1 A1号板单元的基本位移分解结果

表2 A1号板单元的基本变形分解结果

由表1可看出,YOZ面刚体转动位移、XOZ面刚体转动位移在基本位移中所占比例分别为38.30%和38.30%,即A1号板单元所在区域以YOZ面刚体转动位移、XOZ面刚体转动位移为主要基本位移,Z轴向刚体平动位移在基本位移中所占比例为23.40%,即A1号板单元所在区域以Z轴向刚体平动位移为次要基本位移。

由表2可以看出,如果忽略刚体位移而只考虑基本变形,比较投影系数的绝对值,则 A1号板单元所在局部区域以YOZ平面内绕Y轴弯曲变形和XOZ平面内绕X轴弯曲变形为主要基本变形,以绕Z轴扭剪变形为次要基本变形。

表3 A2号板单元的基本位移分解结果

表4 A2号板单元的基本变形分解结果

由表3可看出,Z轴向刚体平动位移在基本位移中所占比例为77.68%,即A2号板单元所在区域以Z轴向刚体平动位移为主要基本位移,YOZ面刚体转动位移和XOZ面刚体转动位移在基本位移中所占比例为11.16%和11.16%,即A2号板单元所在区域以YOZ面刚体转动位移和XOZ面刚体转动位移为次要基本位移。

由表4可以看出,如果忽略刚体位移而只考虑基本变形,比较投影系数的绝对值,则 A2号板单元所在局部区域以绕Z轴扭剪变形为主要基本变形,以YOZ平面内绕Y轴弯曲变形和XOZ平面内绕X轴弯曲变形为次要基本变形。

表5 A3号板单元的基本位移分解结果

表6 A3号板单元的基本变形分解结果

由表5可看出,Z轴向刚体平动位移在基本位移中所占比例为100%,即A3号板单元所在区域以Z轴向刚体平动位移为主要基本位移。

由表6可以看出,如果忽略刚体位移而只考虑基本变形,比较投影系数的绝对值,则 A3号板单元所在局部区域以YOZ平面内绕Y轴弯曲变形和XOZ平面内绕X轴弯曲变形为主要基本变形。

对于简化后的板单元而言,在进行计算时不考虑板沿厚度方向的相对变形,在进行单元划分较多的复杂结构的变形分解时,运行板单元相较于实体单元的优势会更加明显。综上所述,板单元变形分解具有正确性与合理性。

实施例二

如图22所示,以四边简支板为例,其中板的截面尺寸为4000mm×4000mm×100mm(长×宽×高),其厚跨比为h/l

B1号单元的中心坐标为(100mm,100mm,50mm),B2号单元的中心坐标为(1100mm,1100mm,50mm),B3号单元的中心坐标为(2100mm,2100mm,50mm)。

利用有限元分析得出B1、B2、B3号单元采用板单元的节点位移向量分别为:

d

d

d

对变形分解结果进行刚柔分离,将X轴向刚体平动位移、Y轴向刚体平动位移、Z轴向刚体平动位移、YOZ面刚体转动位移、XOZ面刚体转动位移和XOY面刚体转动位移这 6种基本刚体位移同基本变形分别进行考虑。得到板B1、B2、B3单元的基本位移分解结果分别如表7、9、11所示,基本变形分解结果分别如表8、10、12所示。

表7 B1号板单元的基本位移分解结果

表8 B1号板单元的基本变形分解结果

由表7可看出,YOZ面刚体转动位移、XOZ面刚体转动位移在基本位移中所占比例分别为35.1%和35.1%,即B1号板单元所在区域以YOZ面刚体转动位移、XOZ面刚体转动位移为主要基本位移,Z轴向刚体平动位移在基本位移中所占比例为29.8%,即B1号板单元所在区域以Z轴向刚体平动位移为次要基本位移。

由表8可以看出,如果忽略刚体位移而只考虑基本变形,比较投影系数的绝对值,则 B1号板单元所在局部区域以绕Z轴扭剪变形为主要基本变形,以XOZ平面内剪切变形和YOZ平面内剪切变形为次要基本变形。

表9 B2号板单元的基本位移分解结果

表10 B2号板单元的基本变形分解结果

由表9可看出,Z轴向刚体平动位移在基本位移中所占比例为87.62%,即B2号板单元所在区域以Z轴向刚体平动位移为主要基本位移,YOZ面刚体转动位移和XOZ面刚体转动位移在基本位移中所占比例均为6.19%,即B2号板单元所在区域以YOZ面刚体转动位移和XOZ面刚体转动位移为次要基本位移。

由表10可以看出,如果忽略刚体位移而只考虑基本变形,比较投影系数的绝对值,则 B2号板单元所在局部区域以绕Z轴扭剪变形为主要基本变形,以YOZ平面内绕Y轴弯曲变形和XOZ平面内绕X轴弯曲变形为次要基本变形。

表11 B3号板单元的基本位移分解结果

表12 B3号板单元的基本变形分解结果

由表11可看出,Z轴向刚体平动位移在基本位移中所占比例为98.74%,即B3号板单元所在区域以Z轴向刚体平动位移为主要基本位移,YOZ面刚体转动位移和XOZ面刚体转动位移在基本位移中所占比例均为0.63%,即B3号板单元所在区域以YOZ面刚体转动位移和XOZ面刚体转动位移为次要基本位移。

由表12可以看出,如果忽略刚体位移而只考虑基本变形,比较投影系数的绝对值,则 B3号板单元所在局部区域以YOZ平面内绕Y轴弯曲变形和XOZ平面内绕X轴弯曲变形为主要基本变形。

对于简化后的板单元而言,在进行计算时不考虑板沿厚度方向的相对变形,综上所述,板单元变形分解具有正确性与合理性。

以上所述之实施例,只是本发明的较佳实施例而已,仅仅用以解释本发明,并非限制本发明实施范围,对于本技术领域的技术人员来说,当然可根据本说明书中所公开的技术内容,通过置换或改变的方式轻易做出其它的实施方式,故凡在本发明的原理上所作的变化和改进等,均应包括于本发明申请专利范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号