首页> 中国专利> 一种调控肿瘤代谢的核酸和小分子药物共递送纳米制剂及其制备方法

一种调控肿瘤代谢的核酸和小分子药物共递送纳米制剂及其制备方法

摘要

本发明属于药物制剂领域,涉及一种调控肿瘤代谢的核酸和小分子药物共递送纳米制剂及其制备方法,制剂由雷帕霉素、anti‑PFKFB4 siRNA、适配体AS1411修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸聚合物材料以及注射溶媒等制成。本发明采用靶向核仁素适配体修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸聚合物材料,通过溶剂蒸发方法自组装同时包载anti‑PFKFB4 siRNA和疏水药物雷帕霉素。本发明通过靶向肿瘤细胞膜表面高表达的核仁素受体实现纳米制剂肿瘤主动靶向和蓄积;通过键合谷胱甘肽敏感的二硫键官能团,纳米制剂在肿瘤细胞中可控释放两种药物分别发挥药效;两种药物共同递送,能够同步调节糖酵解和自噬,发挥有效的抗肿瘤作用。

著录项

  • 公开/公告号CN114053248A

    专利类型发明专利

  • 公开/公告日2022-02-18

    原文格式PDF

  • 申请/专利权人 复旦大学;

    申请/专利号CN202010794010.2

  • 发明设计人 蒋晨;郭沁;

    申请日2020-08-10

  • 分类号A61K9/51(2006.01);A61K47/54(2017.01);A61K47/69(2017.01);A61K47/34(2017.01);A61K31/436(2006.01);A61K31/7105(2006.01);A61P35/00(2006.01);C08G81/00(2006.01);

  • 代理机构上海元一成知识产权代理事务所(普通合伙) 31268;

  • 代理人吴桂琴

  • 地址 200433 上海市杨浦区邯郸路220号

  • 入库时间 2023-06-19 15:49:21

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-03-18

    实质审查的生效 IPC(主分类):A61K 9/51 专利申请号:2020107940102 申请日:20200810

    实质审查的生效

说明书

技术领域

本发明属于药物制剂领域,具体涉及一种调控肿瘤代谢的核酸和小分子药物共递送纳米制剂及其制备方法。

背景技术

自1927年Warburg发现肿瘤的代谢异常以来,肿瘤的疾病本质一直是我们探索的焦点,肿瘤的代谢异常导致其对营养物质和能源的需求大幅提高,这时肿瘤就会通过糖、氨基酸脂肪酸等代谢途径重编程获得营养物质和能量的补充,其中大于50%的肿瘤供能由糖代谢提供。因此,已有许多研究试图通过抑制肿瘤的糖代谢重编程来杀伤肿瘤细胞,但是由于肿瘤代谢途径的多样性,它很容易通过多种代谢通路代偿补充,比如当肿瘤处在缺乏能量和营养的状态时,会通过适度激活自噬来维持细胞存活。因此从单一途径抑制肿瘤糖代谢无法实现全局化的肿瘤代谢调控。

肿瘤优先依赖糖酵解,以不依赖氧气的方式生产能量。6-磷酸果糖-2-激酶/果糖-2,6-双磷酸调节酶4(PFKFB4),是肿瘤糖酵解途径的关键酶,也是肿瘤代谢异常的重要标志之一,高表达于肿瘤组织。最近的研究表明,PFKFB4是肿瘤侵袭转移相关基因类固醇受体共激活因子3(SRC-3)的激活剂。在SRC3/Akt/mTOR通路基础上,这一新发现表明PFKFB4可作为糖酵解和自噬的分子支点促进肿瘤的转移和侵袭从而成为潜在的肿瘤治疗靶点。

自噬在代谢应激过程中通过降解受损的细胞器和蛋白获取物质和能量的补充,维持细胞稳态。研究表明,在肿瘤的乏氧或贫养区自噬水平显著升高,并通过该途径促进肿瘤细胞存活。但与此同时自噬是一把双刃剑,化疗药物促进的过度自噬可以促进肿瘤细胞的凋亡。此外,自噬还与近年来备受关注的肿瘤的免疫治疗有着紧密的联系。研究表明,自噬可调节NK细胞,巨噬细胞,树突状细胞,以及淋巴细胞,影响其稳态、存活、激活、增殖和分化,从而作用于非特异性免疫和特异性免疫。在非特异性免疫中,自噬通过激活非特异性免疫受体(包括TLR和NLR),促进下游一系列免疫效应,包括NKT细胞的激活,细胞因子分泌和非特异性吞噬作用。在特异性免疫中,自噬可提供大量抗原,加载到II类MHC分子上,并通过抗原提呈细胞激活CD8+T细胞。

然而,由于自噬在抑制肿瘤和促进肿瘤生长中的双重作用,仅仅使用一些自噬调节剂,比如雷帕霉素和氯喹,常常不能获得令人满意的治疗效果。必须确保治疗中自噬的走向。而作为糖酵解和自噬的分子桥梁,上述PFKFB4分子的下调可以通过抑制SRC3/Akt/mTOR通路,导致自噬朝着促进肿瘤细胞凋亡的方向发展。

因此,提出了包括自噬调节剂雷帕霉素和PFKFB4的siRNA在内的共同递送策略,以同步调节糖酵解和自噬,在抑制肿瘤代谢的同时确保自噬方向,以发挥有效的抗肿瘤作用。近年来,纳米给药系统用于肿瘤药物递送系统的研究屡见报道,与传统化疗相比,纳米给药系统可通过被动靶向或主动靶向的策略,将药物有效输送至肿瘤组织或细胞,降低不良反应,提高化疗药物的效果。此外,纳米给药系统可用于化学药物和核苷酸药物的共同药物递送,同时改善核苷酸药物的不稳定性和非选择性。

发明内容

为解决上述问题,本发明的目的在于一种调控肿瘤代谢的核酸和小分子药物共递送纳米制剂及其制备方法。两亲性三嵌段共聚物聚乙二醇-聚胸腺嘧啶-聚(乳酸-共-羟基乙酸)(PEG-T

其中分别选择雷帕霉素和抗PFKFB4siRNA作为化疗药物和基因药物。应用两亲性三嵌段共聚物PEG-T

本发明提出的一种调控肿瘤代谢的核酸和小分子药物共递送纳米制剂,该制剂由雷帕霉素、核酸药物anti-PFKFB4siRNA、无适配体AS1411修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物、适配体AS1411修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物以及注射溶媒制成;其中:所述的适配体AS1411修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物浓度为1~10mg/mL,雷帕霉素浓度为0.5~2mg/mL,无适配体AS1411修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物和适配体AS1411修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物的质量比为1:2~1:10。所述纳米制剂的粒径为40~150nm。

本发明中,所述难溶性药物雷帕霉素。

本发明中,所述核酸药物为anti-PFKFB4siRNA,序列为:

5’-AAAAAAAAAACCGGGCTGATTGGCTGCCACATTTCCTC,

GAGGAAATGTGGCAGCCAATCAGCTTTTTTG-3’。

本发明中,所述适配体为AS1411,序列为5’

NH

本发明中,所述聚合物材料为两亲性三嵌段共聚物聚乙二醇-聚嘧啶-聚(乳酸-共-羟基乙酸)(PEG-T

本发明中,所述的所述的注射溶媒采用注射用水或生理盐水。

本发明提供的一种调控肿瘤代谢的核酸和小分子药物共递送纳米制剂的制备方法,具体步骤如下:

(1)一种AptamerAS1411修饰的聚合物材料的合成方法

(1.1)称取β-巯基乙胺和三苯基氯甲烷,溶解于四氢呋喃中,氮气保护下,室温反应3~6小时,减压去除溶剂,加入氢氧化钠水溶液,固体析出后使用纯水和正己烷洗涤数次,得到巯基保护产物;在上述反应中,三苯基氯甲烷为β-巯基乙醇浓度的1~2倍,氢氧化钠溶液为1~3摩尔每升;

(1.2)称取步骤(1.1)中得到的产物和三乙胺,溶解于无水四氢呋喃中,氮气保护,滴加溴丙烯于上述反应液,室温反应12~18小时,色谱柱纯化,流动相为正己烷、乙酸乙酯;所述三乙胺为步骤(1.1)中产物摩尔数的2~4倍,溴丙烯为步骤(1.1)中产物摩尔数的0.5~2倍;

(1.3)称取(1.2)中产物、胸腺嘧啶乙酸、1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐和1-羟基苯并三唑溶于二氯甲烷,氮气保护下室温反应12~24小时,柱色谱分离纯化后得到三苯基修饰的聚嘧啶单体;所述步骤(2)中产物为胸腺嘧啶乙酸摩尔数的2~4倍,1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐为胸腺嘧啶乙酸摩尔数的1~3倍,1-羟基苯并三唑为胸腺嘧啶乙酸浓度的2~4倍;

(1.4)称取步骤(1.3)中三苯基保护单体溶于三氟乙酸、三羟甲基甲胺基乙磺酸和二氯甲烷组成的混合溶液中,氮气保护后,室温搅拌10~30分钟后,饱和碳酸氢钠水溶液洗涤三次;所述三氟乙酸、三羟甲基甲胺基乙磺酸和二氯甲烷的混合溶液中三者体积比为1:1:8~1:1:10;

(1.5)称取脱保护聚嘧啶单体、2,2-二羟甲基丙酸和巯基封端聚乙二醇溶于二甲基亚砜,得到混合物溶液,混合物溶液在365nm紫外灯光照下室温反应12~24小时,产物在甲醇中透析8小时,丙酮中透析8小时后,旋蒸除去溶剂,得到聚乙二醇聚嘧啶衍生物;所述2,2-二羟甲基丙酸在溶剂中浓度为0.5~2%,聚嘧啶单体为巯基封端聚乙二醇摩尔数的8~16倍,聚乙二醇分子量为3000~5000,透析袋分子截留量为3000~5000;

(1.6)称取二硫二吡啶、巯基乙醇、乙酸分别溶于甲醇,氮气保护,巯基乙醇滴加入二硫二吡啶和乙酸的混合溶液中,室温搅拌反应2~5小时,色谱纯化,得到二硫羟基吡啶,流动相为正己烷、乙酸乙酯;所述巯基乙醇为二硫二吡啶摩尔数的0.4~0.6倍,乙酸为二硫二吡啶浓度的0.1~0.3倍;

(1.7)称取(1.6)中产物、对硝基苯基氯甲酸酯、N,N-二异丙基乙胺溶于二氯甲烷,氩气保护下,室温搅拌12~24小时,减压去除溶剂,色谱纯化,得到引入二硫键的连接聚合物;所述(1.6)中产物为对硝基苯甲酸之摩尔数的0.8~1.2倍,N,N-二异丙基乙胺为对硝基苯甲酸酯摩尔数的0.1~0.5倍。

(1.8)称取步骤(1.7)中产物,聚乳酸-羟基乙酸共聚物(PLGA)、4-二甲氨基吡啶,溶于二氯甲烷,氮气保护下室温搅拌12~36小时,产物在纯水中透析48小时得到二硫键修饰的PLGA;所述PLGA为(7)中产物摩尔数的0.8~1.2倍,透析袋分子截留量为8000~10000;

(1.9)称取步骤(1.5)和步骤(1.8)中产物、4-二甲氨基吡啶溶于二氯甲烷,室温搅拌12~36小时,产物在二甲亚砜中透析8小时后在纯水中透析48小时,冻干得到聚乙二醇聚嘧啶聚乳酸羟基乙酸三嵌段聚合物;所述步骤(1.5)中产物是(1.8)中产物摩尔数的0.8~1.2倍,4-二甲氨基吡啶为(1.5)中产物摩尔数的1~1.5倍,透析袋的分子截留量为12000~15000。

(1.10)更换(1.5)中原料为双官能团聚乙二醇,按照步骤(1.9)中得到羧基修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸聚合物,在纯水与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、N-羟基丁二酰亚胺活化后用无RNA酶纯水透析除去小分子,加入AS1411aptamer,在90℃下变性后在冰水混合物中快速冷却,超滤除去未反应的aptamer;所述AS1411aptamer为聚乙二醇摩尔数的0.8~1.2倍;

(2)一种适配体AS1441修饰共载anti-PFKFB4siRNA和雷帕霉素的纳米粒的制备方法

(2.1)制备体积质量浓度为1~5mg/mL的雷帕霉素的二氯甲烷溶液;

(2.2)称取无AS1411适配体修饰的及有AS1411适配体修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物溶解于二氯甲烷中,在上述溶液中加入步骤(2.1)的雷帕霉素的二氯甲烷溶液,将上述混合溶液在搅拌下滴加进入pH值7.4的PBS溶液,缓慢升温至37℃,保温2~3小时,缓慢升温至40~50℃,保温2~3小时,恢复室温后在2~4℃离心,转速14000rpm,时间5~15分钟;

(2.3)取(2.2)中离心所得纳米粒、anti-PFKFB4siRNA加入含有20~40%DMSO的PBS 7.4溶液,2~6℃搅拌0.5~2小时,在2~4℃离心,转速14000rpm,时间5~15分钟,吸去上清,重悬于PBS 7.4中既得最终同时装载雷帕霉素和anti-PFKFB4siRNA的纳米粒;所述的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物溶液浓度为5~20mg/mL,雷帕霉素质量为聚合物材料质量的0.1~0.3倍,无AS1411适配体修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物为有AS1411适配体修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物的1.5~8倍。

本发明的有益效果在于:

1、采用溶剂蒸发法的聚合物纳米粒作为药物载体,同时包载疏水小分子药物雷帕霉素和核酸药物anti-PFKFB4siRNA,聚合物材料可以通过材料自身的亲疏水性质进行自组装,该制备工艺简单可行,粒径分布均匀,粒径为80~150nm。

2、采用AptamerAS1411修饰的含有二硫键的聚合物材料制备形成的聚合物胶束纳米粒,注射机体后血液循环保持稳定,实现长循环,进而通过AS1411的核仁素靶向作用,将装载的治疗药物有效递送至肿瘤病灶部位;二硫键结构在肿瘤细胞内高浓度的谷胱甘肽中能够促进纳米粒的降解和药物的释放,分别发挥siRNA和雷帕霉素的药效,实现药物的共同递送和协同作用。

附图说明

图1为aptamer AS1411修饰聚乙二醇聚嘧啶聚乳酸羟基乙酸嵌段共聚物的合成方法路线图;其中:含有AS1441的雷帕霉素、Anti-PFKFB4siRNA共载药纳米粒简称T-NPs,不含AS1441的共载药纳米粒称为NT-NPs;

图2为aptamer AS1411修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸嵌段共聚物的核磁共振(NMR)谱图;

图3为装载雷帕霉素和anti-PFKFB4siRNA的aptamerAS1411修饰的聚合物纳米粒的粒径分布图以及显微镜照片,其中A为聚合物胶束的粒径分布图,B为的纳米粒的显微镜照片;

图4为纳米粒对于4T1肿瘤细胞的体外杀伤效果图;

图5为小鼠尾静脉注射不同纳米颗粒12小时后的组织分布图,其中A为活体照片,B为离体组织照片;

图6为小鼠尾静脉注射游离雷帕霉素或anti-PFKFB4siRNA溶液及不同纳米颗粒后的肿瘤治疗效果,其中A为瘤体积变化图,B为T细胞激活图。

具体实施方式

下面结合实施例对本发明进行详细说明。

实施例1:适配体AS1441修饰共载anti-PFKFB4siRNA和雷帕霉素的纳米制剂,其聚合物合成方法如图1所示,包括以下步骤:

1)合成一种AptamerAS1411修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物材料

(1)称取β-巯基乙胺2.04g,三苯基氯甲烷5g,溶解于100mL四氢呋喃中,氮气保护下,室温反应3小时,减压去除溶剂,加入2摩尔每升氢氧化钠水溶液,固体析出后使用纯水和正己烷洗涤数次,得到巯基保护产物;

(2)称取步骤(1)中得到的产物8.6g,三乙胺8mL,溶解于100mL无水四氢呋喃中,氮气保护,滴加溴丙烯1.2mL于上述反应液,室温反应12小时,色谱柱纯化,流动相为正己烷:乙酸乙酯=1:2;

(3)称取(2)中产物0.88g,胸腺嘧啶乙酸450mg,1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐683.71mg,1-羟基苯并三唑644.38mg溶于二氯甲烷,氮气保护下室温反应12小时,柱色谱分离纯化,流动相为二氯甲烷:甲醇=20:1,得到三苯基修饰的聚嘧啶单体;

(4)称取(3)中三苯基保护单体284mg,溶于3mL三氟乙酸、三羟甲基甲胺基乙磺酸和二氯甲烷的混合溶液中,混合溶液中三者体积比为1:1:8,氮气保护后,室温搅拌20分钟,反应完毕后饱和碳酸氢钠水溶液洗涤三次;

(5)称取脱保护基后聚嘧啶单体250mg,2,2-二羟甲基丙酸10mg,巯基封端聚乙二醇(分子量为5000)溶于二甲基亚砜,混合物溶液在365nm紫外灯光照下室温反应24小时,产物在甲醇中透析8小时,丙酮中透析8小时后,旋蒸除去溶剂,得到聚乙二醇聚嘧啶衍生物,透析袋分子截留量为3500;

(6)称取二硫二吡啶564mg、巯基乙醇100mg、乙酸60μL分别溶于甲醇,氮气保护,巯基乙醇滴加入二硫二吡啶和乙酸的混合溶液中,室温搅拌反应2.5小时,色谱纯化,流动相为正己烷:乙酸乙酯=2:3,得到二硫羟基吡啶;

(7)称取(6)中产物158mg、对硝基苯基氯甲酸酯186mg、N,N-二异丙基乙胺溶于二氯甲烷153.3μL,氩气保护下,室温搅拌12小时,减压去除溶剂,色谱纯化,流动相为乙酸乙酯:正己烷=2:3,得到引入二硫键的连接聚合物;

(8)称取(7)中产物14.08mg,聚乳酸-羟基乙酸共聚物(PLGA)200mg、4-二甲氨基吡啶0.156mg,溶于5mL二氯甲烷,氮气保护下室温搅拌24小时,产物在纯水中透析48小时得到二硫键修饰的PLGA;透析袋分子截留量为8000~10000;

(9)称取(5)100mg和(8)中产物42.57mg、4-二甲氨基吡啶0.156mg溶于二氯甲烷,室温搅拌12~36小时,产物在二甲亚砜中透析8小时后在纯水中透析48小时,冻干得到聚乙二醇聚嘧啶聚乳酸羟基乙酸三嵌段聚合物;所述(5)中产物是(8)中产物摩尔数的0.8~1.2倍,4-二甲氨基吡啶为(5)中产物摩尔数的1~1.5倍,透析袋的分子截留量为12000~15000;

(10)更换(5)中原料为双官能团聚乙二醇,按照(9)中步骤得到羧基修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸聚合物100μg,在10μL纯水与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐400mM、N-羟基丁二酰亚胺200mM活化后用无RNA酶纯水透析除去小分子,加入AS1411aptamer 10μg,在90℃下变性后在冰水混合物中快速冷却,超滤除去未反应的aptamer,得到AS1411修饰的聚合物。

2)制备适配体AS1441修饰共载anti-PFKFB4siRNA和雷帕霉素的纳米制剂

(1)制备体积质量浓度为5mg/mL的雷帕霉素的二氯甲烷溶液;

(2)称取无AS1411适配体修饰(1.6mg)的及有AS1411适配体修饰的(0.4mg)聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物溶解于100μL二氯甲烷中,在上述溶液中加入步骤(1)的雷帕霉素的二氯甲烷溶液100μL,将上述混合溶液在搅拌下滴加进入pH值7.4的PBS溶液500μL,缓慢升温至37℃,保温2小时,缓慢升温至45℃,保温2小时,恢复室温后在4℃离心,转速14000rpm,时间10分钟;

(3)取(2)中离心所得纳米粒、anti-PFKFB4siRNA加入含有30%DMSO的PBS 7.4溶液,4℃搅拌1小时,在4℃离心,转速14000rpm,时间10分钟,吸去上清,重悬于PBS 7.4中既得最终同时装载雷帕霉素和anti-PFKFB4siRNA的纳米粒。

通过这种方法成功合成了适配体AS1441修饰共载anti-PFKFB4siRNA和雷帕霉素的纳米制剂(图2),制备的纳米粒为球状颗粒,粒径分布均匀,平均粒径在100nm左右(图3)。通过对小鼠乳腺癌4T1细胞毒性对纳米粒促进肿瘤细胞凋亡能力进行考察,结果显示相对于游离雷帕霉素,纳米粒具有显著增强的肿瘤细胞杀伤能力(图4)。

实施例2:包载的近红外探针的适配体AS1441修饰载anti-PFKFB4siRNA的纳米制剂,其聚合物合成方法如图1所示,包括以下步骤:

1)合成一种AptamerAS1411修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物

材料

(1)称取β-巯基乙胺2.04g,三苯基氯甲烷5g,溶解于100mL四氢呋喃中,氮气保护下,室温反应3小时,减压去除溶剂,加入2摩尔每升氢氧化钠水溶液,固体析出后使用纯水和正己烷洗涤数次,得到巯基保护产物;

(2)称取步骤(1)中得到的产物8.6g,三乙胺8mL,溶解于100mL无水四氢呋喃中,氮气保护,滴加溴丙烯1.2mL于上述反应液,室温反应12小时,色谱柱纯化,流动相为正己烷:乙酸乙酯=1:2;

(3)称取(2)中产物0.88g,胸腺嘧啶乙酸450mg,1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐683.71mg,1-羟基苯并三唑644.38mg溶于二氯甲烷,氮气保护下室温反应12小时,柱色谱分离纯化,流动相为二氯甲烷:甲醇=20:1,得到三苯基修饰的聚嘧啶单体;

(4)称取(3)中三苯基保护单体284mg,溶于3mL三氟乙酸、三羟甲基甲胺基乙磺酸和二氯甲烷的混合溶液中,混合溶液中三者体积比为1:1:8,氮气保护后,室温搅拌20分钟,反应完毕后饱和碳酸氢钠水溶液洗涤三次;

(5)称取脱保护基后聚嘧啶单体250mg,2,2-二羟甲基丙酸10mg,巯基封端聚乙二醇(分子量为5000)溶于二甲基亚砜,混合物溶液在365nm紫外灯光照下室温反应24小时,产物在甲醇中透析8小时,丙酮中透析8小时后,旋蒸除去溶剂,得到聚乙二醇聚嘧啶衍生物,透析袋分子截留量为3500;

(6)称取二硫二吡啶564mg、巯基乙醇100mg、乙酸60μL分别溶于甲醇,氮气保护,巯基乙醇滴加入二硫二吡啶和乙酸的混合溶液中,室温搅拌反应2.5小时,色谱纯化,流动相为正己烷:乙酸乙酯=2:3,得到二硫羟基吡啶;

(7)称取(6)中产物158mg、对硝基苯基氯甲酸酯186mg、N,N-二异丙基乙胺溶于二氯甲烷153.3μL,氩气保护下,室温搅拌12小时,减压去除溶剂,色谱纯化,流动相为乙酸乙酯:正己烷=2:3,得到引入二硫键的连接聚合物;

(8)称取(7)中产物14.08mg,聚乳酸-羟基乙酸共聚物(PLGA)200mg、4-二甲氨基吡啶0.156mg,溶于5mL二氯甲烷,氮气保护下室温搅拌24小时,产物在纯水中透析48小时得到二硫键修饰的PLGA;透析袋分子截留量为8000~10000;

(9)称取(5)100mg和(8)中产物42.57mg、4-二甲氨基吡啶0.156mg溶于二氯甲烷,室温搅拌12~36小时,产物在二甲亚砜中透析8小时后在纯水中透析48小时,冻干得到聚乙二醇聚嘧啶聚乳酸羟基乙酸三嵌段聚合物;所述(5)中产物是(8)中产物摩尔数的0.8~1.2倍,4-二甲氨基吡啶为(5)中产物摩尔数的1~1.5倍,透析袋的分子截留量为12000~15000;

(10)更换(5)中原料为双官能团聚乙二醇,按照(9)中步骤得到羧基修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸聚合物100μg,在10μL纯水与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐400mM、N-羟基丁二酰亚胺200mM活化后用无RNA酶纯水透析除去小分子,加入AS1411aptamer 10μg,在90℃下变性后在冰水混合物中快速冷却,超滤除去未反应的aptamer,得到AS1411修饰的聚合物。

2)制备装载近红外探针的适配体AS1441修饰载anti-PFKFB4siRNA的纳米制剂

(1)制备体积质量浓度为5mg/mL的近红外BODIPY探针的二氯甲烷溶液;

(2)称取无AS1411适配体修饰(1.6mg)的及有AS1411适配体修饰的(0.4mg)聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物溶解于100μL二氯甲烷中,在上述溶液中加入步骤(1)的近红外探针的BODIPY的二氯甲烷溶液100μL,将上述混合溶液在搅拌下滴加进入pH值7.4的PBS溶液500μL,缓慢升温至37℃,保温2小时,缓慢升温至45℃,保温2小时,恢复室温后在4℃离心,转速14000rpm,时间10分钟;

(3)取(2)中离心所得纳米粒、anti-PFKFB4siRNA加入含有30%DMSO的PBS 7.4溶液,4℃搅拌1小时,在4℃离心,转速14000rpm,时间10分钟,吸去上清,重悬于PBS 7.4中既得最终同时装载BODIPY近红外探针和anti-PFKFB4siRNA的纳米粒。

通过给小鼠尾静脉注射不同的聚合物纳米粒,结果显示适配体AS1411修饰的聚合物纳米粒在肿瘤组织中有显著的蓄积(附图5)。

实施例3:适配体AS1441修饰共载anti-PFKFB4siRNA和雷帕霉素的纳米制剂1)合成一种AptamerAS1411修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物材料

(1)称取β-巯基乙胺2.04g,三苯基氯甲烷5g,溶解于100mL四氢呋喃中,氮气保护下,室温反应3小时,减压去除溶剂,加入2摩尔每升氢氧化钠水溶液,固体析出后使用纯水和正己烷洗涤数次,得到巯基保护产物;

(2)称取步骤(1)中得到的产物8.6g,三乙胺8mL,溶解于100mL无水四氢呋喃中,氮气保护,滴加溴丙烯1.2mL于上述反应液,室温反应12小时,色谱柱纯化,流动相为正己烷:乙酸乙酯=1:2;

(3)称取(2)中产物0.88g,胸腺嘧啶乙酸450mg,1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐683.71mg,1-羟基苯并三唑644.38mg溶于二氯甲烷,氮气保护下室温反应12小时,柱色谱分离纯化,流动相为二氯甲烷:甲醇=20:1,得到三苯基修饰的聚嘧啶单体;

(4)称取(3)中三苯基保护单体284mg,溶于3mL三氟乙酸、三羟甲基甲胺基乙磺酸和二氯甲烷的混合溶液中,混合溶液中三者体积比为1:1:8,氮气保护后,室温搅拌20分钟,反应完毕后饱和碳酸氢钠水溶液洗涤三次;

(5)称取脱保护基后聚嘧啶单体250mg,2,2-二羟甲基丙酸10mg,巯基封端聚乙二醇(分子量为5000)溶于二甲基亚砜,混合物溶液在365nm紫外灯光照下室温反应24小时,产物在甲醇中透析8小时,丙酮中透析8小时后,旋蒸除去溶剂,得到聚乙二醇聚嘧啶衍生物,透析袋分子截留量为3500;

(6)称取二硫二吡啶564mg、巯基乙醇100mg、乙酸60μL分别溶于甲醇,氮气保护,巯基乙醇滴加入二硫二吡啶和乙酸的混合溶液中,室温搅拌反应2.5小时,色谱纯化,流动相为正己烷:乙酸乙酯=2:3,得到二硫羟基吡啶;

(7)称取(6)中产物158mg、对硝基苯基氯甲酸酯186mg、N,N-二异丙基乙胺溶于二氯甲烷153.3μL,氩气保护下,室温搅拌12小时,减压去除溶剂,色谱纯化,流动相为乙酸乙酯:正己烷=2:3,得到引入二硫键的连接聚合物;

(8)称取(7)中产物14.08mg,聚乳酸-羟基乙酸共聚物(PLGA)200mg、4-二甲氨基吡啶0.156mg,溶于5mL二氯甲烷,氮气保护下室温搅拌24小时,产物在纯水中透析48小时得到二硫键修饰的PLGA;透析袋分子截留量为8000~10000;

(9)称取(5)100mg和(8)中产物42.57mg、4-二甲氨基吡啶0.156mg溶于二氯甲烷,室温搅拌12~36小时,产物在二甲亚砜中透析8小时后在纯水中透析48小时,冻干得到聚乙二醇聚嘧啶聚乳酸羟基乙酸三嵌段聚合物;所述(5)中产物是(8)中产物摩尔数的0.8~1.2倍,4-二甲氨基吡啶为(5)中产物摩尔数的1~1.5倍,透析袋的分子截留量为12000~15000;

(10)更换(5)中原料为双官能团聚乙二醇,按照(9)中步骤得到羧基修饰的聚乙二醇聚嘧啶聚乳酸羟基乙酸聚合物100μg,在10μL纯水与1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐400mM、N-羟基丁二酰亚胺200mM活化后用无RNA酶纯水透析除去小分子,加入AS1411aptamer 10μg,在90℃下变性后在冰水混合物中快速冷却,超滤除去未反应的aptamer,得到AS1411修饰的聚合物。

2)制备适配体AS1441修饰共载anti-PFKFB4siRNA和雷帕霉素的纳米制剂

(1)制备体积质量浓度为5mg/mL的雷帕霉素的二氯甲烷溶液;

(2)称取无AS1411适配体修饰(1.6mg)的及有AS1411适配体修饰的(0.4mg)聚乙二醇聚嘧啶聚乳酸羟基乙酸衍生物溶解于100μL二氯甲烷中,在上述溶液中加入步骤(1)的雷帕霉素的二氯甲烷溶液100μL,将上述混合溶液在搅拌下滴加进入pH值7.4的PBS溶液500μL,缓慢升温至37℃,保温2小时,缓慢升温至45℃,保温2小时,恢复室温后在4℃离心,转速14000rpm,时间10分钟;

(3)取(2)中离心所得纳米粒、anti-PFKFB4siRNA加入含有30%DMSO的PBS 7.4溶液,4℃搅拌1小时,在4℃离心,转速14000rpm,时间10分钟,吸去上清,重悬于PBS 7.4中既得最终同时装载雷帕霉素和anti-PFKFB4siRNA的纳米粒。

通过给4T1乳腺癌肿瘤小鼠尾静脉注射游离雷帕霉素、anti-PFKFB4siRNA、两种游离药物混合物和不同的聚合物纳米粒,结果显示适配体AS1441修饰共载anti-PFKFB4siRNA和雷帕霉素的纳米制剂具有显著的肿瘤治疗效果以及体内免疫激活效果(图6)。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号