首页> 中国专利> 一种兼具高储能密度,高功率密度和高效率的钛酸钡基弛豫铁电陶瓷材料及其制备方法

一种兼具高储能密度,高功率密度和高效率的钛酸钡基弛豫铁电陶瓷材料及其制备方法

摘要

本发明提供一种兼具高储能密度、高功率密度和高效率的钛酸钡基弛豫铁电陶瓷材料及其制备方法,属于电介质储能陶瓷材料技术领域;其化学组成为BixBa1‑3x/2TiO3(0.08≤x≤0.18)。方法包括:在BaTiO3的A位引入Bi3+,然后采用固相反应法合成。本发明所制得的钛酸钡基弛豫铁电陶瓷材料的储能密度能够达到6.48J/cm3,储能效率可以稳定在92%以上,且在480kV/cm的电场下,储能效率可以达到94.6%。此外,其制备方法简单,成本低廉,对环境友好,可以大规模生产。

著录项

  • 公开/公告号CN114671681A

    专利类型发明专利

  • 公开/公告日2022-06-28

    原文格式PDF

  • 申请/专利权人 北京科技大学;

    申请/专利号CN202210373275.4

  • 发明设计人 刘辉;孙正;罗华杰;陈骏;

    申请日2022-04-11

  • 分类号C04B35/468;C04B35/622;H01G4/12;

  • 代理机构北京市广友专利事务所有限责任公司;

  • 代理人张仲波

  • 地址 100083 北京市海淀区学院路30号

  • 入库时间 2023-06-19 15:47:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-06-28

    公开

    发明专利申请公布

说明书

技术领域

本发明涉及电介质储能陶瓷材料领域,具体涉及一种兼具高储能密度、高功率密度和高效率的钛酸钡基弛豫铁电陶瓷材料及其制备方法。

背景技术

近年来,储能陶瓷电容器以耐高电场、高功率密度等优点广泛应用于通讯、医疗、军事等脉冲功率电子系统。目前,应用最为广泛的储能陶瓷电容器当属铅基电容器,但是随着环境保护的要求以及可持续发展战略的推进,发展无铅陶瓷电容器已逐渐成为必然趋势。相比于铅基储能陶瓷,制约无铅储能陶瓷发展的最大问题是储能密度低,难以顺应脉冲功率系统元器件小型化、集成化的发展趋势。研究发现,具有高储能密度的材料通常具有耐高电场、低介电损耗和高介电常数等特点。

在无铅功能陶瓷中,钛酸钡陶瓷具有介电常数大、介电损耗低等优势,目前已被广泛应用于多层陶瓷电容器等电子元器件领域。但作为储能材料,钛酸钡陶瓷存在温度稳定性差、击穿场强低、储能效率低等不足,限制了其在储能材料中应用。针对于此,现阶段主要通过掺杂改性、包覆改性等方式,合成钛酸钡基弛豫铁电体,但目前仍未发现兼具的高储能密度、高功率密度和高效率的储能材料。

发明内容

本发明要解决的技术问题是提供一种钛酸钡基弛豫铁电陶瓷材料及其制备方法,其兼具高储能密度、高功率密度和高效率。

为解决上述技术问题,本发明提供如下技术方案:

第一方面,提供一种兼具高储能密度、高功率密度和高效率的钛酸钡基弛豫铁电陶瓷材料,其化学组成为Bi

优选地,0.10≤x≤0.16,x具体例如可以为0.10、0.12、0.13、0.14、0.15、 0.16。

更优选地,x=0.12。

在上述优选x方案下,其储能密度能够达到6.48J/cm

第二方面,提供第一方面所述的钛酸钡基弛豫铁电陶瓷材料的制备方法,包括:在BaTiO

其中,优选地,具体采用以下步骤:

S1、按照Bi

S2、将S1煅烧后得到的样品滴加粘结剂进行造粒,然后烧结;

S3、将S2烧结得到的陶瓷片进行打磨,并在上下表面涂覆银浆,然后进行二次煅烧,冷却后即可得到一种兼具高储能密度,高功率密度和高效率的钛酸钡基弛豫铁电陶瓷材料。

其中,优选地,S1中所述球磨的时间为12-24h。

S1中所述乙醇的用量可以根据所采用容器的体积和研磨均匀情况进行自由选择,只要利于研磨均匀即可,且乙醇在后续处理过程中也会逐渐蒸发掉。

其中,优选地,S1中所述一次煅烧的条件包括:温度为600~900℃,时间为1-3h。

其中,优选地,S2中所述粘结剂为PVA和PVB中的一种。

优选地,粘结剂与S1煅烧后得到的样品的用量质量比为1:5-15。

其中,优选地,S2中所述烧结的条件包括:温度为1100~1300℃,时间为 1-3h。

其中,优选地,S3中所述二次煅烧的条件包括:温度为500~800℃,时间为0.5-3h。

本发明的上述技术方案的有益效果如下:

通过取代改性,发明了一种兼具高储能密度,高功率密度和高效率的钛酸钡基弛豫铁电陶瓷材料,即Bi

本发明兼具高储能密度、高功率密度、高储能效率,可广泛的应用于移动通信、医疗卫生、国防军事等脉冲功率电子系统。本发明制备方法简单、成本低廉、适合大规模生产,有利于促进其相关应用。

附图说明

图1为实施例1制得的钛酸钡基弛豫铁电陶瓷的SEM图片;

图2为实施例1制得的钛酸钡基弛豫铁电陶瓷的电滞回线;

图3为实施例1制得的钛酸钡基弛豫铁电陶瓷的储能特性随电场强度的变化曲线。

具体实施方式

为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。

实施例1:

利用本发明制备Bi

图1为本实施例制得的钛酸钡基弛豫铁电陶瓷的SEM图片,从图中可以看出,该陶瓷晶粒尺寸在1μm左右,且致密度较高。

图2为本实施例制得的钛酸钡基弛豫铁电陶瓷室温下的单极电滞回线,从图中可以看出,该陶瓷电滞回线细长,且最大电场强度可以达到550kV/cm。

图3为本实施例制得的钛酸钡基弛豫铁电陶瓷储能特性随电场强度的变化曲线,从图中可以看出,该陶瓷的储能密度在550kV/cm的电场下,储能密度可以达到6.48J/cm

实施例2:

利用此发明制备Bi

经测试,本实施例制得的钛酸钡基弛豫铁电陶瓷在480kV/cm的电场下,储能密度达到5.56J/cm

实施例3:

利用此发明制备Bi

经测试,本组分制得的钛酸钡基弛豫铁电陶瓷在540kV/cm的电场下,储能密度达到5.91J/cm

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号