首页> 中国专利> 载脂蛋白C3(APOC3)iRNA组合物及其使用方法

载脂蛋白C3(APOC3)iRNA组合物及其使用方法

摘要

本发明涉及靶向载脂蛋白C3(APOC3)基因的RNAi试剂例如双链RNAi试剂,和使用这类RNAi试剂来抑制APOC3表达的方法以及治疗患有APOC3相关障碍例如高甘油三酯血症的受试者的方法。

著录项

说明书

本申请为国际申请PCT/US2015/061065进入中国国家阶段的中国专利申请(申请号为201580073561.7,申请日为2015年11月17日,发明名称为“载脂蛋白C3(APOC3)iRNA组合物及其使用方法”)的分案申请。

相关申请

本申请要求2014年11月17日提交的美国临时申请号62/080,941和2015年3月20日提交的美国临时申请号62/136,159的优先权权益。前述申请的每个的全部内容特此通过引用结合在此。

序列表

本申请包含已经以电子方式以ASCII格式提交并且特此通过引用以其全文结合的序列表。创建于2015年11月17目的所述ASCII副本被命名为121301-02520_SL.txt并且大小为212,085个字节。

发明背景

载脂蛋白C3(APOC3)是一种极低密度脂蛋白(VLDL),并且是脂蛋白代谢的重要调节剂。在人类中,APOC2由位于基因簇中的APOC3基因与位于染色体11的长臂上的APOA1和APOA4基因共同编码。APOC3作为小的99个氨基酸的蛋白质在肝脏中表达,并在较小程度上在肠中表达。在除去内质网中的20个氨基酸的信号肽后,形成了79个氨基酸的成熟ApoC3蛋白,其可以以非糖基化或糖基化的同种型存在。

APOC3的主要作用是通过非竞争性抑制内皮结合脂蛋白脂肪酶(LPL)来调节脂类分解。LPL水解富含三酰甘油(甘油三脂)的脂蛋白(TRL)中的三酰甘油,将脂肪酸释放到血浆中,并将大的富含三酰甘油的颗粒转化为较小的缺乏三酰基甘油的残留脂蛋白。缺乏APOC3的个体具有较低的TRL水平,加上三酰甘油的高效脂解作用。此外,其中APOC3基因已被遗传缺失的小鼠也显示具有低血浆三酰甘油水平和有效的TRL分解代谢。APOC3还抑制肝脂酶(HL),肝脂酶是一种在肝脏中合成的具有甘油三酯脂肪酶和磷脂酶A1活性的脂肪分解酶。APOC3对HL的抑制作用进一步降低了肝脏中TRL残留物的脂类分解和摄取。APOC3还显示出刺激极低密度脂蛋白(VLDL)的合成。据信与APOC3的这种作用相关的潜在机制可能涉及APOB的蛋白酶体介导的降解的抑制,从而导致APOB合成和分泌增加,以及VLDL三酰甘油的合成增加。因此,APOC3可能在调节肝脏VLDL输出方面发挥关键作用。

细胞研究报道APOC3可能干扰TRL和与肝脂蛋白受体的残留结合。APOC3可以通过掩蔽或改变APOB和APOE的构象来消除APOB和ApoE介导的脂蛋白与低密度脂蛋白受体(LDLR)的结合。APOC3还显著抑制乳糜微粒和VLDL颗粒与脂解作用刺激受体(LSR)的结合。

APOC3水平的增加引起高甘油三酯血症或甘油三酯的高(高)血浓度(血症)的发展。甘油三酯水平升高与多种疾病有关,这些疾病包括心血管疾病、动脉粥样硬化、非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗)、高血压和皮肤损害(黄色瘤)。非常高的甘油三酯水平也会增加急性胰腺炎的风险。因此,调节APOC3代谢可能是管理高甘油三酯血症和相关疾病的新型重要治疗方法。

因此,本领域需要用于治疗载脂蛋白C3相关障碍如高甘油三酯血症的APOC3表达调节剂。

发明概述

本发明提供抑制或减少APOC3基因表达的iRNA组合物。该基因可以在细胞(例如受试者(例如人)体内的细胞)的内部。

本发明还提供了用于治疗患有将受益于抑制或降低APOC3基因的表达的障碍(例如载脂蛋白C3相关疾病如高甘油三酯血症)的受试者的方法和疗法,该方法和疗法使用抑制或降低APOC3基因表达的iRNA组合物。

在一些实施例中,本发明提供一种用于抑制载脂蛋白C3(APOC3)在细胞中表达的双链RNAi试剂,其中所述双链RNAi试剂包含形成一个双链区的一条有义链和一条反义链,其中所述有义链包含与SEQ ID NO:1的核苷酸序列相差不多于3个核苷酸的至少15个连续核苷酸,并且所述反义链包含与SEQ ID NO:2的核苷酸序列相差不多于3个核苷酸的至少15个连续核苷酸,

其中至少一条链的基本上所有核苷酸都是修饰的核苷酸,并且其中所述有义链与附接在3’-末端处的配体共轭。

在某些方面中,该有义链的所有核苷酸和该反义链的所有核苷酸均是修饰的核苷酸。在一个方面中,该有义链和该反义链包含一个互补区,该互补区包含与表4A、表4B、表5、表8、表9、表10、表11A、表11B、表12以及表13中列出的序列中的任一个相差不多于3个核苷酸的至少15个连续核苷酸。

在一些实施例中,修饰的核苷酸中的至少一个选自下组,该组由以下各项组成:3’-末端脱氧胸腺嘧啶(dT)核苷酸、2’-O-甲基修饰的核苷酸、2’-氟代修饰的核苷酸、2’-脱氧修饰的核苷酸、锁定核苷酸、解锁核苷酸、构象限制性核苷酸、限制性乙基核苷酸、脱碱基核苷酸、2’-氨基修饰的核苷酸、2’-O-烯丙基修饰的核苷酸、2’-C-烷基修饰的核苷酸、2’-羟基修饰的核苷酸、2’-甲氧基乙基修饰的核苷酸、2’-O-烷基修饰的核苷酸、吗啉代核苷酸、包含氨基磷酸酯、非天然碱基的核苷酸、四氢吡喃修饰的核苷酸、1,5-失水己糖醇修饰的核苷酸、环己烯基修饰的核苷酸、包含5’-硫代磷酸酯基团的核苷酸、包含5’-甲基膦酸酯基团的核苷酸、包含5’磷酸酯或5’磷酸酯模拟物的核苷酸、包含乙烯基磷酸酯的核苷酸、包含腺苷-乙二醇核酸(GNA)的核苷酸、包含胸苷-乙二醇核酸(GNA)S-异构体的核苷酸、包含2-羟甲基-四氢呋喃-5-磷酸酯的核苷酸、包含2’-脱氧胸苷-3’磷酸酯的核苷酸、包含2’-脱氧鸟苷-3’-磷酸酯的核苷酸、和与胆甾醇基衍生物或十二烷酸双癸酰胺基团连接的末端核苷酸。

在一个实施例中,该有义链的基本上所有核苷酸都是修饰的。在另一方面,该反义链的基本上所有核苷酸都是修饰的。在又另一个实施例中,该有义链的基本上所有核苷酸和该反义链的基本上所有核苷酸均是修饰的核苷酸。在一个实施例中,该有义链的所有核苷酸都是修饰的核苷酸。在另一个实施例中,该反义链的所有核苷酸都是修饰的核苷酸。在又另一个实施例中,该有义链的所有核苷酸和该反义链的所有核苷酸均是修饰的核苷酸。

在一个方面中,至少一条链包含具有至少1个核苷酸的3’突出端。在另一个方面中,至少一条链包含具有至少2个核苷酸的3’突出端。

在一些实施例中,本发明提供了一种能够抑制细胞中载脂蛋白C3(APOC3)的表达的双链RNAi试剂,其中该双链RNAi试剂包含形成一个双链区的一条有义链和一条反义链,其中该反义链包含与编码APOC3的mRNA的一部分互补的一个区,其中每条链的长度是约14个至约30个核苷酸,其中该双链RNAi试剂由化学式(III)表示:

有义链:5’n

反义链:3’n

其中:

i、j、k和l各自独立地是0或1;

p、p’、q和q’各自独立地是0-6;

各N

各N

各n

XXX、YYY、ZZZ、X’X’X’、Y’Y’Y’、以及Z’Z’Z’各自独立地表示在三个连续核苷酸上具有三个相同修饰的一个基序;

N

其中该有义链被共轭到至少一个配体上。

在另一个实施例中,i是0;j是0;i是1;j是1;i和j两者均是0;或i和j两者均是1。在又另一个实施例中,k是0;l是0;k是1;l是1;k和l两者均是0;或k和l两者均是1。在另一个方面中,该YYY基序出现在该有义链的切割位点处或附近。在又另一个方面中,该Y’Y’Y’基序出现在该反义链的从5’-端起的11、12和13位置处。

在一个实施例中,Y’是2’-O-甲基或2’-氟。

在一些方面中,化学式(III)由化学式(IIIa)表示:

有义链:5’n

反义链:3’n

在一个另外的方面中,该双链区的长度是15-30个核苷酸对。在另一个方面中,该双链区的长度是17-23个核苷酸对。在另一个实施例中,该双链区的长度是17-25个核苷酸对。在又另一个实施例中,该双链区的长度是23-27个核苷酸对。在一个另外的方面中,该双链区的长度是19-21个核苷酸对。在又另一个方面中,该双链区的长度是21-23个核苷酸对。

在一个实施例中,每条链具有15-30个核苷酸。在一个另外的实施例中,每条链具有19-30个核苷酸。

在一个方面中,对核苷酸的修饰选自下组,该组由以下各项组成:如表5、表9、表10、表11B、表12、表13及其组合中列出的修饰。

在一些实施例中,这些核苷酸上的修饰是2’-O-甲基和2’-氟代修饰。

在一些实施例中,该配体是通过一个二价或三价支链接头附接的一种或多种GalNAc衍生物。在一个另外的实施例中,该配体是

在一些方面中,该配体附接到该有义链的3’端。

在某些实施例中,该RNAi试剂共轭到如以下示意图中所示的配体上

其中X是O或S。

在一些方面中,该RNAi试剂进一步包括至少一个硫代磷酸酯或甲基膦酸酯核苷酸间键联。在另一个方面中,该硫代磷酸酯或甲基膦酸酯核苷酸间键联是在一条链的3’-末端处。在另一另外的方面中,该链是该反义链。在又另一方面中,该链是该有义链。

在一些实施例中,该硫代磷酸酯或甲基膦酸酯核苷酸间键联在一条链的5’末端处。在另一个方面中,该链是该反义链。在另一另外的方面中,该链是该有义链。

在某些实施例中,该硫代磷酸酯或甲基膦酸酯核苷酸间键联是在一条链的5’-末端和3’-末端两者处。在一个实施例中,该链是该反义链。

在一些方面中,RNAi试剂包含6-8个硫代磷酸酯核苷酸间键联。在另一个实施例中,该反义链包含5’-末端处的两个硫代磷酸酯核苷酸间键联和3’-末端处的两个硫代磷酸酯核苷酸间键联,并且该有义链在或者5’-末端或者3’-末端处包含至少两个硫代磷酸酯核苷酸间键联。

在一些实施例中,该双链体的反义链的5’端的1位置处的碱基对是一个AU碱基对。

在一些方面中,这些Y核苷酸含有一个2’-氟代修饰。在另一个方面中,这些Y’核苷酸含有一种2’-O-甲基修饰。

在一些实施例中,该有义链具有总共21个核苷酸,并且该反义链具有总共23个核苷酸。

在一些方面中,该RNAi试剂选自下组,该组具有在表4A、表4B、表5、表8、表9、表10、表11A、表11B以及表12中列出的RNAi试剂。

在某些实施例中,本发明还提供能够抑制细胞中载脂蛋白C3(APOC3)的表达的双链RNAi试剂,其中该双链RNAi试剂包含形成双链区的有义链和反义链,

其中该有义链包含5’-GCUUAAAAGGGACAGUAUUCU-3’(SEQ ID NO:13),并且该反义链包含5’-AGAAUACUGUCCCUUUUAAGCAA-3’(SEQ ID NO:14),

其中该有义链的基本上所有核苷酸和该反义链的基本上所有核苷酸是修饰的核苷酸,

其中该有义链被共轭到在3’-末端处附接的一个配体上,并且

其中该配体是通过一个二价或三价支链接头附接的一种或多种GalNAc衍生物。

在其他实施例中,本发明还提供能够抑制细胞中载脂蛋白C3(APOC3)的表达的双链RNAi试剂,其中该双链RNAi试剂包含形成双链区的有义链和反义链,

其中该有义链包含5’-GCUUAAAAGGGACAGUAUUCU-3’(SEQ ID NO:13),并且该反义链包含5’-UGAAUACUGUCCCUUUUAAGCAA-3’(SEQ ID NO:15),

其中该有义链的基本上所有核苷酸和该反义链的基本上所有核苷酸是修饰的核苷酸,

其中该有义链被共轭到在3’-末端处附接的一个配体上,并且其中该配体是通过一个二价或三价支链接头附接的一种或多种GalNAc衍生物。

在某些实施例中,本发明还提供能够抑制细胞中载脂蛋白C3(APOC3)的表达的双链RNAi试剂,其中该双链RNAi试剂包含形成双链区的有义链和反义链,

其中该有义链包含5’-GCUUAAAAGGGACAGUAUUCA-3’(SEQ ID NO:659),并且该反义链包含5’-UGAAUACUGUCCCUUUUAAGCAA-3’(SEQ ID NO:670),

其中该有义链的基本上所有核苷酸和该反义链的基本上所有核苷酸是修饰的核苷酸,

其中该有义链被共轭到在3’-末端处附接的一个配体上,并且

其中该配体是通过一个二价或三价支链接头附接的一种或多种GalNAc衍生物。

在实施例中,该有义链的所有核苷酸都是修饰的核苷酸。在一个实施例中,该反义链的所有核苷酸都是修饰的核苷酸。在另一个实施例中,该有义链的所有核苷酸和该反义链的所有核苷酸均是修饰的核苷酸。

在另一个方面中,修饰的核苷酸中的至少一个选自下组,该组由以下各项组成:3’-末端脱氧胸腺嘧啶(dT)核苷酸、2’-O-甲基修饰的核苷酸、2’-氟代修饰的核苷酸、2’-脱氧修饰的核苷酸、锁定核苷酸、解锁核苷酸、构象限制性核苷酸、限制性乙基核苷酸、脱碱基核苷酸、2’-氨基修饰的核苷酸、2’-O-烯丙基修饰的核苷酸、2’-C-烷基修饰的核苷酸、2’-羟基修饰的核苷酸、2’-甲氧基乙基修饰的核苷酸、2’-O-烷基修饰的核苷酸、吗啉代核苷酸、包含氨基磷酸酯、非天然碱基的核苷酸、四氢吡喃修饰的核苷酸、1,5-失水己糖醇修饰的核苷酸、环己烯基修饰的核苷酸、包含5’-硫代磷酸酯基团的核苷酸、包含5’-甲基膦酸酯基团的核苷酸、包含5’磷酸酯或5’磷酸酯模拟物的核苷酸、包含乙烯基磷酸酯的核苷酸、包含腺苷-乙二醇核酸(GNA)的核苷酸、包含胸苷-乙二醇核酸(GNA)S-异构体的核苷酸、包含2-羟甲基-四氢呋喃-5-磷酸酯的核苷酸、包含2’-脱氧胸苷-3’磷酸酯的核苷酸、包含2’-脱氧鸟苷-3’-磷酸酯的核苷酸、和与胆甾醇基衍生物或十二烷酸双癸酰胺基团连接的末端核苷酸。

在一个实施例中,该RNAi试剂包含不超过10个包含2’-氟代修饰的核苷酸。在另一个实施例中,该RNAi试剂包含不超过9个包含2’-氟代修饰的核苷酸。在另一个实施例中,该RNAi试剂包含不超过8个包含2’-氟代修饰的核苷酸。在另一个实施例中,该RNAi试剂包含不超过7个包含2’-氟代修饰的核苷酸。在另一个实施例中,该RNAi试剂包含不超过6个包含2’-氟代修饰的核苷酸。在另一个实施例中,-该RNAi试剂包含不超过5个包含2’-氟代修饰的核苷酸。在又另一个实施例中,该有义链包含不超过4个包含2’-氟代修饰的核苷酸。在另一个实施例中,该有义链包含不超过4个包含2’-氟代修饰的核苷酸。在另一个实施例中,该有义链包含不超过3个包含2’-氟代修饰的核苷酸。在另一个实施例中,该有义链包含不超过2个包含2’-氟代修饰的核苷酸。在另一个方面中,该反义链包含不超过6个包含2’-氟代修饰的核苷酸。在另一个实施例中,该反义链包含不超过5个包含2’-氟代修饰的核苷酸。在另一个实施例中,该反义链包含不超过4个包含2’-氟代修饰的核苷酸。在另一个实施例中,该反义链包含不超过3个包含2’-氟代修饰的核苷酸。在又另一个方面中,该反义链包含不超过2个包含2’-氟代修饰的核苷酸。

在一个实施例中,本发明的双链RNAi试剂在反义链的5’核苷酸处还包含5’-磷酸酯或5’-磷酸酯模拟物。在另一个实施例中,双链RNAi试剂在反义链的5’核苷酸处还包含5’-磷酸酯模拟物。在一个具体实施例中,该5’-磷酸酯模拟物是5’-乙烯基磷酸酯(5’-VP)。

在某些方面,该配体是

在一些实施例中,该RNAi试剂共轭至以下示意图中所示的配体

其中X是O或S。

在一些方面中,本发明提供双链RNAi试剂,该双链RNAi试剂包含在表4A、表4B、表5、表8、表9、表10、表11A、表11B、表12、以及表13中的任一个中列出的RNAi序列。

在一个实施例中,该RNAi试剂是包含以下序列的AD-57553:

有义链:5’GfscsUfuAfaAfaGfGfGfaCfaGfuAfuUfcUfL96 3’(SEQ ID NO:16)

反义链:5’asGfsaAfuAfcUfgUfcccUfuUfuAfaGfcsAfsa 3’(SEQ ID NO:17)。

在另一个实施例中,该RNAi试剂是包含以下序列的AD-65696:

有义链:5’GfscsUfuAfaAfaGfGfGfaCfaGfuAfuUfcUfL96 3’(SEQ ID NO:18)

反义链:5’VPusGfsaAfuAfcUfgUfcccUfuUfuAfaGfcsasa 3’(SEQ ID NO:19)。

在又另一个方面中,该RNAi试剂是包含以下序列的AD-65703:

有义链:5’gscsuuaaAfaGfGfGfacaguauucaL96 3’(SEQ ID NO:20)

反义链:5’usGfsaauAfcUfGfucccUfuUfuaagcsasa 3’(SEQ ID NO:21)。

在又另一个方面中,该RNAi试剂是包含以下序列的AD-65704:

有义链:5’gscsuuaaAfaGfGfGfacaguauucaL96 3’(SEQ ID NO:22)

反义链:5’usGfsaauacugucccUfuuuaagcsasa 3’(SEQ ID NO:23)。

在又另一个方面中,该RNAi试剂是包含以下序列的AD-67221:

有义链:5’cscscaauAfaAfGfCfuggacaagaaL96 3’(SEQ ID NO:714)

反义链:5’usUfscuuGfuCfCfagcuUfuAfuugggsasg 3’(SEQ ID NO:718)

在一个实施例中,该RNAi试剂是包含以下序列的AD-69535:

有义链:5’gscsuuaaaaGfgGfacaguauuca 3’(SEQ ID NO:738)

反义链:5’sGfsaauacugucCfcUfuuuaagcsasa 3’(SEQ ID NO:749)。

在另一个实施例中,该RNAi试剂是包含以下序列的AD-69541:

有义链:5’gscsuuaaaaGfgGfacagu(Agn)uuca 3’(SQE ID NO:744)

反义链:5’usGfsaauacugucCfcUfuuuaagcsasa 3’(SEQ ID NO:755)。

在某些实施例中,本发明还提供了包含修饰的反义多核苷酸试剂的组合物,其中该试剂能够抑制细胞中APOC3的表达,并且包含与选自下组的一个有义序列互补的一个序列,该组具有在表4A、表4B、表5、表8、表9、表10、表11A、表11B、表12、以及表13中的任一个中列出的序列,其中该多核苷酸的长度是约14个至约30个核苷酸。

在一些方面中,本发明提供了一种含有本文描述的双链RNAi试剂的载体。在其他方面中,本发明提供了一种含有本文描述的双链RNAi试剂的细胞。

在一些实施例中,本发明涉及包含双链RNAi试剂的药物组合物或包含修饰的反义多核苷酸试剂的组合物或本文所述的载体。

在某些方面中,该双链RNAi试剂存在于无缓冲的溶液中。在另一个方面中,该无缓冲的溶液是盐水或水。在其他方面中,该双链RNAi试剂存在于缓冲溶液中。在一个另外的实施例中,该缓冲溶液包含乙酸盐、柠檬酸盐、醇溶谷蛋白、碳酸盐或磷酸盐或其任何组合。在一个特定的实施例中,该缓冲溶液是磷酸盐缓冲盐水(PBS)。

在一个实施例中,本发明还提供了抑制细胞中载脂蛋白C3(APOC3)的表达的方法,该方法包括:

(a)使细胞与双链RNAi试剂或包含修饰的反义多核苷酸试剂的组合物、载体或本文描述的药物组合物接触;以及

(b)使在步骤(a)中产生的该细胞维持足以获得APOC3基因的mRNA转录物降解的时间,从而抑制该细胞中该APOC3基因的表达。

在一个方面中,该细胞是在一个受试者内。在另一个方面中,该受试者是人或兔。在一个实施例中,该受试者患有一种APOC3相关疾病。

在一些实施例中,该APOC3表达被抑制至少约30%、约40%、约50%、约60%、约70%、约80%、约90%、约95%、约98%或约100%。

在一些方面中,本发明提供了治疗患有一种载脂蛋白C3(APOC3)相关疾病的受试者的方法,该方法包括向该受试者给予治疗有效量的该双链RNAi试剂、或包含修饰的反义多核苷酸试剂的组合物或载体或本文描述的药物组合物,由此治疗所述受试者。

在一个实施例中,该APOC3相关疾病是高甘油三酯血症。在另一个实施例中,该APOC3相关疾病选自下组,该组由以下各项组成:非酒精性脂肪肝疾病、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗)、高血压、动脉粥样硬化和胰腺炎。

在一些方面中,该双链RNAi试剂是以约0.01mg/kg至约10mg/kg或约0.5mg/kg至约50mg/kg的剂量给予的。在另一个方面中,该双链RNAi试剂是以约10mg/kg至约30mg/kg的剂量给予的。在另一个方面中,该双链RNAi试剂是以约3mg/kg的剂量给予的。在又另一个方面中,该双链RNAi试剂是以约10mg/kg的剂量给予的。

在一个实施例中,该双链RNAi试剂是皮下给予的。在另一个实施例中,该双链RNAi试剂是静脉内给予的。在另一个实施例中,该双链RNAi试剂是肌肉内给予的。

在一些方面中,该RNAi试剂以两个或更多个剂量给予。在另一个方面中,该RNAi试剂以选自下组的时间间隔给予,该组由以下各项组成:约每12小时一次、约每24小时一次、约每48小时一次、约每72小时一次以及约每96小时一次。

在某些实施例中,本发明的这些方法进一步包括向该受试者给予一种另外的治疗剂。在一个另外的实施例中,该另外的治疗剂选自下组,该组由以下各项组成:HMG-CoA还原酶抑制剂、贝特类、胆酸螯合剂、烟酸、抗血小板剂、血管紧张素转化酶抑制剂、血管紧张素II受体拮抗剂、酰基辅酶A胆固醇酰基转移酶(ACAT)抑制剂、胆固醇吸收抑制剂、胆固醇酯转移蛋白(CETP)抑制剂、微粒体甘油三酯转移蛋白(MTTP)抑制剂、胆固醇调节剂、胆酸调节剂、过氧化物酶体增殖激活受体(PPAR)激动剂、基于基因的治疗剂、复合血管保护剂、糖蛋白Ilb/IIIa抑制剂、阿司匹林或阿司匹林样化合物、IBAT抑制剂、鲨烯合酶抑制剂、单核细胞趋化蛋白(MCP)-I抑制剂或鱼油。

附图简要说明

图1是显示用单次剂量为0.1nM或10mM的本发明所述iRNA处理后Hep3B细胞中APOC3 mRNA的相对含量的柱状图。

图2是显示在用3mg/kg、10mg/kg和30mg/kg剂量的GalNac共轭的AD-57558处理的野生型小鼠中在第5天测量的APOC3 mRNA的相对含量的柱状图。

图3是显示在注射AD-57553、AD-57547和AD-58924的个体APOC3-AAV小鼠中测量的APOC3 mRNA的测量水平的柱状图。

图4是显示在注射AD-57553、AD-57547和AD-58924的APOC3-AAV小鼠中测量的APOC3 mRNA水平的组平均值的柱状图。

图5是显示在先注射hAPOC3 AAV的10

图6是显示在先注射hAPOC3 AAV的10

图7A是显示在注射hAPOC3 AAV的10

图7B是显示在注射hAPOC3 AAV的10

图8是显示在注射hAPOC3 AAV的10

图9是显示在注射hAPOC3 AAV的10

图10是显示在注射hAPOC3 AAV的10

图11是显示出用于AD-57553、AD-65696、AD-65699、AD-65703和AD-65704的多剂量研究的给药方案Q2Wx4的示意图。

图12A是显示在注射hAPOC3 AAV的10

图12B是显示在注射hAPOC3 AAV的10

图12C是显示在注射hAPOC3 AAV的10

图13是显示在注射hAPOC3 AAV的10

图14是显示在注射hAPOC3 AAV的10

图15是显示在注射hAPOC3 AAV的10

图16A是显示在注射hAPOC3 AAV的10

图16B是显示在注射hAPOC3 AAV的10

图17A是显示在注射hAPOC3 AAV的10

图17B是显示在注射hAPOC3 AAV的10

图18A是显示在单次1mg/kg每周剂量的AD-65704持续给药8周(QWx8)后的食蟹猴中第1、8、11、15、22、29、36、43、57、64和71天测量的血清APOC3蛋白量(相对于给药前第7天)的图。

图18B是显示在单次1mg/kg剂量的AD-65704给药后的食蟹猴中第1、8、11、15、22、29和36天测量的血清APOC3蛋白量(相对于给药前第7天)的图。

图18C是显示在单次1mg/kg每周剂量的AD-65704持续给药5周(q1wx5)后的食蟹猴中第64天肝APOC3 mRNA量(相对于给药前第7天)以及在单次1mg/kg剂量的AD-65704给药后的食蟹猴中第12天肝APOC3 mRNA量(相对于给药前第7天)的图。

图19A是显示在单次1mg/kg剂量的所述iRNA给药后的食蟹猴中第1、8、11、15、22、29和36天测量的血清APOC3蛋白量(相对于给药前第7天)的图。

图19B是显示在单次1mg/kg剂量的所述iRNA给药后的食蟹猴中第12天测量的肝APOC3 mRNA量(相对于给药前第7天)的柱状图。

图20A是显示在单次1mg/kg剂量的所述iRNA给药的食蟹猴中第1、8、11、15、22、29、36、43、50、57、64和71天以及随后单次皮下3mg/kg剂量的相同试剂给药的食蟹猴中第36天测量的血清APOC3 mRNA量(相对于给药前第7天)的图。

图20B是显示在单次1mg/kg剂量的所述iRNA给药后的食蟹猴中第1天随后为单次3mg/kg剂量的相同iRNA试剂给药后的食蟹猴中第36天测量的肝APOC3 mRNA量(相对于给药前第7天)的柱状图。

发明的详细说明

本发明提供了iRNA试剂,例如双链iRNA试剂,以及降低或抑制APOC3基因表达的组合物。该基因可以在细胞(例如受试者(例如人)体内的细胞)的内部。

本发明还提供了用于治疗患有将受益于抑制或降低APOC3的表达的障碍(例如载脂蛋白C3相关疾病或障碍如高甘油三酯血症)的受试者的方法,该方法使用抑制或减少APOC3基因表达的iRNA组合物。

本发明的这些iRNA包括一个RNA链(反义链),该RNA链具有长度是约30个核苷酸或更少的一个区,例如长度是15-30、15-29、15-28、15-27、15-26、15-25、15-24、15-23、15-22、15-21、15-20、15-19、15-18、15-17、18-30、18-29、18-28、18-27、18-26、18-25、18-24、18-23、18-22、18-21、18-20、19-30、19-29、19-28、19-27、19-26、19-25、19-24、19-23、19-22、19-21、19-20、20-30、20-29、20-28、20-27、20-26、20-25、20-24、20-23、20-22、20-21、21-30、21-29、21-28、21-27、21-26、21-25、21-24、21-23或21-22个核苷酸,该区基本上与APOC3基因的mRNA转录物的至少部分互补。使用这些iRNA能实现在细胞中靶向降解APOC3基因的mRNA。具体地说,非常低剂量的本发明的iRNA可以特异性地和有效地介导RNA干扰(RNAi),从而引起对APOC3基因的表达的显著抑制。使用体外和体内测定,本发明的诸位发明人已经证明,靶向APOC3基因的iRNA可以介导RNAi,导致APOC3基因表达的显著抑制和APOC3蛋白水平的降低。本发明的诸位发明人还证明了,靶向APOC3基因的iRNA可以减少与载脂蛋白C3相关障碍(例如较低甘油三酯水平)相关的症状。因此,这些方法和包括这些iRNA的组合物可用于治疗患有载脂蛋白C3相关障碍(例如高甘油三酯血症)的受试者。

以下详细说明披露了如何制备和使用抑制APOC3基因表达的含有iRNA的组合物,以及用于治疗患有将受益于抑制和/或减少APOC3基因的表达的疾病和障碍的受试者的组合物、用途和方法。

I.定义

为了使本发明可更容易理解,首先定义某些术语。此外,应该注意的是,每当列举一个参数的一个值或取值范围时,目的是表明这些列举的值的中间值和范围也意在成为本发明的部分。

在此处使用的冠词“一个”和“一种(“a”和“an”)是指一个或超过一个(即,至少一个)该冠词的语法宾语。通过举例,“一个元素”是指一个元素或超过一个元素,例如多个元素。

在此使用术语“包括(including)”意指短语“包括但不限于”,并且与该短语可互换使用。

在此使用术语“或(or)”意指术语“和/或”,并且与该术语可互换使用,除非上下文清楚地另外指明。

如在此使用的术语“APOC3”是指编码载脂蛋白C3以及其蛋白质产品的公知基因,在本领域中也称为HALP2或APOCIII。

术语“APOC3”包括人APOC3,其氨基酸及其完全编码序列可以在例如GenBank登录号GI:4557322((NM_000040.1;SEQ ID NO:1)中找到;食蟹猴APOC3,其氨基酸及其完全编码序列可以在例如GenBank登录号GI:544489959(XM_05579730.1;SEQ ID NO:3)中找到;猕猴APOC3,其氨基酸及其完全编码序列可以在例如GenBank登录号GI:297269260(XM_001090312.2;SEQ ID NO:5)中找到;小鼠(小鼠)APOC3,其氨基酸及其完全编码序列可以在例如GenBank登录号GI:577019555(NM_023114.4;SEQ ID NO:7)中找到;大鼠(褐家鼠)APOC3,其氨基酸及其完全编码序列可以在例如GenBank登录号GI:402534545(NM_012501.2;SEQ ID NO:9)中找到;和兔(穴兔)APOC3,GenBank登录号GI:655601498(XM_002708371.2,SEQ ID NO:11)。

APOC3 mRNA序列的附加实例使用公开可获得的数据库,例如GenBank、UniProt、OMIM以及猕猴属基因组测序计划网站很容易获得。

如在此所使用,术语“APOC3”还指APOC3基因的天然存在的DNA序列变异,如APOC3基因中的单核苷酸多态性(SNP)。APOC3DNA序列中的示例性SNP可以通过

如在此所使用的,“靶标序列”指的是在APOC3基因的转录期间形成的mRNA分子的核苷酸序列的连续部分,包括为初级转录产物的RNA加工产物的mRNA。在一个实施例中,序列的靶部分将是至少足够长的,以用作在一种APOC3基因转录过程中形成的一种mRNA分子的核苷酸序列的该部分处或附近用于iRNA引导的裂解的底物。

靶标序列可以是从大约9-36个核苷酸长度,例如大约15-30个核苷酸长度。例如靶标序列可以是从大约15-30个核苷酸,15-29、15-28、15-27、15-26、15-25、15-24、15-23、15-22、15-21、15-20、15-19、15-18、15-17、18-30、18-29、18-28、18-27、18-26、18-25、18-24、18-23、18-22、18-21、18-20、19-30、19-29、19-28、19-27、19-26、19-25、19-24、19-23、19-22、19-21、19-20、20-30、20-29、20-28、20-27、20-26、20-25、20-24、20-23、20-22、20-21、21-30、21-29、21-28、21-27、21-26、21-25、21-24、21-23、或21-22个核苷酸长度。以上引用的范围和长度的范围与长度中间值也意在成为本发明的部分。

如在此所使用,术语“包含序列的链”是指包含一个核苷酸链的寡核苷酸,该核苷酸链通过使用标准核苷酸命名法提到的顺序来描述。

“G”、“C”、“A”、“T”以及“U”每一者通常分别代表包括鸟嘌呤、胞嘧啶、腺嘌呤、胸腺嘧啶以及尿嘧啶作为碱基的核苷酸。然而,应理解术语“核糖核苷酸”或“核苷酸”还可以指一种经修饰的核苷酸(如以下进一步详述)或一种替代性的置换部分(参见,如表3)。技术人员应很好地意识到,鸟嘌呤、胞嘧啶、腺嘌呤以及尿嘧啶可以被其他部分置换而基本上不改变一种寡核苷酸(包括一种具有这种置换部分的核苷酸)的碱基配对特性。例如非限制性地,包含肌苷作为其碱基的核苷酸可以与含有腺嘌呤、胞嘧啶或尿嘧啶的核苷酸进行碱基配对。因此,含有尿嘧啶、鸟嘌呤或腺嘌呤的核苷酸可以在本发明中体现的dsRNA的核苷酸序列中由含有例如肌苷的核苷酸置换。在另一个实例中,寡核苷酸中任何地方的腺嘌呤和胞嘧啶可以对应地置换为鸟嘌呤和尿嘧啶,以便形成与靶mRNA碱基配对的G-U摇摆。含有这类置换部分的序列适用于在本发明中体现的组合物和方法。

如在此可互换使用的术语“iRNA”、“RNAi试剂”、“iRNA试剂”、“RNA干扰试剂”是指含有作为在此定义的所述术语的RNA的试剂,并且该试剂通过一种RNA诱导沉默复合体(RISC)途径介导RNA转录物的靶向裂解。iRNA通过被称为RNA干扰(RNAi)的过程引导mRNA的序列特异性降解。iRNA调节(例如,抑制)细胞(例如,受试者如哺乳动物受试者内的细胞)中APOC3的表达。

在一个实施例中,本发明的RNAi试剂包括与靶RNA序列例如APOC3靶mRNA序列相互作用的一个单链RNA,以便引导靶RNA的裂解。不希望受理论约束,认为引入细胞中长的双链RNA由称作Dicer的III型核酸内切酶分解成包括有义链和反义链的双链短干扰RNA(siRNA)(夏普(Sharp)等人,(2001)基因与发育(Genes Dev.),15:485)。Dicer(核糖核酸酶-III样酶)使这些dsRNA加工成具有特征性的两个碱基3’突出端的19-23个碱基对短干扰RNA(伯恩斯坦(Bernstein)等人,(2001)自然(Nature)409:363)。然后将这些siRNA结合到一种RNA诱导沉默复合体(RISC)中,其中一种或多种螺旋酶使siRNA双链体展开,从而能够实现互补反义链导引靶标识别(尼卡能(Nykanen)等人,(2001)细胞(Cell)107:309)。当结合至适当的靶mRNA时,RISC内的一种或多种核酸内切酶裂解该靶标以便诱导沉默(巴希尔(Elbashir)等人,(2001)基因与发育(Genes Dev.)15:188)。因此,在一个方面,本发明涉及促进实现靶基因(即一种APOC3基因)的沉默的一种RISC复合体形成的、产生于细胞内的一种单链RNA(ssRNA)(siRNA双链体的反义链)。所以,术语“siRNA”还可以在此用作指代以上所述的RNAi。

在另一个实施例中,该RNAi试剂可以是引入到细胞或生物体中以便抑制靶mRNA的单链RNA。单链RNAi试剂结合到RISC核酸内切酶Argonaute 2上,该核酸内切酶然后切割该标靶mRNA。这些单链siRNA通常是15-30个核苷酸并且是化学修饰的。单链RNA的设计和检测描述于美国专利号8,101,348中,以及利马(Lima)等人,(2012)《细胞》(Cell)150:883-894中,特此将它们各自的全部内容通过引用结合在此。在此描述的任何反义核苷酸序列可以被用作如在此所描述或如通过描述于利马(Lima)等人,(2012)《细胞》(Cell)150:883-894中的方法化学修饰的单链siRNA。

在另一个实施例中,用于本发明的组合物、用途以及方法中的“iRNA”是双链RNA,并且在此称为“双链RNAi试剂”、“双链RNA(dsRNA)分子”、“dsRNA试剂”、“RNAi试剂”、“RNAi”或“dsRNA”。术语“dsRNA”是指核糖核酸分子的一种复合体,该复合体具有包含两条反平行和基本上互补的核酸链的双链体结构,称为相对于一种靶RNA(即一种APOC3基因)具有“有义”和“反义”取向。在本发明的一些实施例中,双链RNA(dsRNA)通过在此称为RNA干扰或RNAi的转录后基因沉默机理来引发靶RNA例如mRNA的降解。

通常,dsRNA分子的每条链的大部分的核苷酸是核糖核苷酸,但是如在此详述的,两条链的每一者或两者还可以包括一个或多个非核糖核苷酸,例如,脱氧核糖核苷酸和/或修饰的核苷酸。另外,如在此说明中所使用,“RNAi试剂”可以包括具有化学修饰的核糖核苷酸;RNAi试剂可以包括在多个核苷酸处的实质性修饰。如在此使用,术语“修饰的核苷酸”是指独立地具有一个修饰的糖部分、一个修饰的核苷酸间键联和/或一个修饰的核碱基的一个核苷酸。因此,该术语修饰的核苷酸涵盖核苷间键联、糖部分或核碱基的例如一个官能团或原子的取代、添加或去除。。适用于本发明的试剂中的修饰包括在此披露的或本领域中已知的所有类型的修饰。如在siRNA型分子中使用的,任何这样的修饰出于本说明书和权利要求书的目的都由“RNAi试剂”涵盖。

双链体区可以具有容许通过一种RISC途径特异性降解一种所希望的靶RNA的任何长度,并且长度可以在从约9个至36个碱基对的范围内,例如长度是约15-30个碱基对,例如长度是约9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35或36个碱基对,如长度是约15-30、15-29、15-28、15-27、15-26、15-25、15-24、15-23、15-22、15-21、15-20、15-19、15-18、15-17、18-30、18-29、18-28、18-27、18-26、18-25、18-24、18-23、18-22、18-21、18-20、19-30、19-29、19-28、19-27、19-26、19-25、19-24、19-23、19-22、19-21、19-20、20-30、20-29、20-28、20-27、20-26、20-25、20-24、20-23、20-22、20-21、21-30、21-29、21-28、21-27、21-26、21-25、21-24、21-23或21-22个碱基对。以上列举的范围和长度的范围与长度中间值也被想到成为本发明的部分。

形成双链体结构的两条链可以是一个更大的RNA分子的不同部分,或它们可以是单独的RNA分子。当这两条链是一个更大的分子的部分时,并且因此通过一条链的3’-端与形成双链体结构的对应的另一条链的5’-端之间的不间断核苷酸链来连接,连接的RNA链称为“发夹环”。发夹环可以包含至少一个未配对的核苷酸。在一些实施例中,该发夹环可以包含至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、至少10个、至少20个、至少23个或更多个未配对的核苷酸。

当dsRNA的两个基本上互补的链包含单独的RNA分子时,这些分子不是必须的,但是可以共价连接。在这两条链是通过除了一条链的3’-末端与形成该双链结构的对应另一条链的5’-末端之间的非间断核苷酸链以外的方式而共价连接的情况下,该连接结构称作“连接子(linker)”。这些RNA链可以具有相同或不同数目的核苷酸。碱基对的最大数目是该dsRNA的最短链中的核苷酸数目减去存在于该双链体中的任何突出端。除了双链体结构以外,RNAi可以包含一个或多个核苷酸突出端。

在一个实施例中,本发明的RNAi试剂是dsRNA,其每条链包括与靶RNA序列例如APOC3靶mRNA序列相互作用的20-30个核苷酸,以便引导靶RNA的裂解。不希望受理论约束,通过称为Dicer的III型核酸内切酶来将引入到细胞中的长双链RNA分解成siRNA(夏普(Sharp)等人(2001)基因与发育(Genes Dev.)15:485)。Dicer(核糖核酸酶-III样酶)使dsRNA加工成具有特征性的两个碱基3’突出端的19-23个碱基对短干扰RNA(伯恩斯坦(Bernstein)等人,(2001)自然(Nature)409:363)。然后将siRNA结合到一种RNA诱导沉默复合体(RISC)中,其中一种或多种螺旋酶使siRNA双链体展开,从而能够实现互补反义链导引靶标识别(尼卡能(Nykanen)等人,(2001)细胞(Cell)107:309)。当结合至适当的靶mRNA时,RISC内的一种或多种核酸内切酶裂解该靶标以便诱导沉默(巴希尔(Elbashir)等人,(2001)基因与发育(Genes Dev.)15:188)。

如在此所使用的,术语“核苷酸突出”是指至少一个非配对的核苷酸,其从iRNA的双链体结构(例如,dsRNA)突出。例如当dsRNA的一条链的3’-端延伸超过另一条链的5’-端时或反之亦然,存在核苷酸突出端。dsRNA可以包括具有至少一个核苷酸的突出端;替代地该突出端可以包含至少两个核苷酸、至少三个核苷酸、至少四个核苷酸、至少五个核苷酸或更多。核苷酸突出端可以包括核苷酸/核苷类似物(包括脱氧核苷酸/核苷)或由其组成。一个或多个突出端可以处于有义链、反义链或其任意组合上。另外,突出端的一个或多个核苷酸可以存在于dsRNA的反义或有义链的5’末端、3’末端或两个末端上。

在一个实施例中,dsRNA的反义链在3’-末端和/或5’-末端具有一个1-10核苷酸,如1、2、3、4、5、6、7、8、9、或10个核苷酸的突出端。在一个实施例中,dsRNA的有义链在3’-末端和/或5’-末端具有一个1-10核苷酸,如1、2、3、4、5、6、7、8、9、或10个核苷酸的突出端。在另一个实施例中,突出端中的一个或多个核苷酸被核苷硫代磷酸酯替代。

“平端”或“平末端”意指在该双链RNAi试剂的该端处不存在不成对的核苷酸,即无核苷酸突出端。“平端”RNAi试剂是在其整个长度上为双链的dsRNA,即,在分子的任一端处没有核苷酸突出端。本发明的RNAi试剂包括在一端处具有核苷酸突出端(即,具有一个突出端和一个平端的试剂)或在两端处都具有核苷酸突出端的RNAi试剂。

术语“反义链”或“引导链”是指一种iRNA(如一种dsRNA)的包括与一个靶序列(例如一种APOC3 mRNA)基本上互补的一个区的链。如在此所使用,术语“互补性区域”是指反义链上与一个序列(例如,如在此定义的一个靶序列,例如如一个APOC3核苷酸序列)基本上互补的区。当该互补区不完全与该靶序列互补时,错配可以处于分子的内部区域或末端区域中。通常,最耐受的错配存在于末端区域内,例如在iRNA的5’-和/或3’-末端的5、4、3或2个核苷酸内部。

如在此使用的术语“有义链”或“过客链”是指包括与如在此定义的该术语的反义链的一个区基本上互补的一个区的一种iRNA的链。

如在此所使用,术语“裂解区”是指位于紧邻裂解位点处的一个区。裂解位点是在其上发生裂解的靶标上的位点。在一些实施例中,该裂解区包含三个在该裂解位点的任一端上并且与其紧紧相邻的碱基。在一些实施例中,该裂解区包含两个在该裂解位点的任一端上并且与其紧紧相邻的碱基。在一些实施例中,该裂解位点具体来说存在于由该反义链的核苷酸10和11结合的位点处,并且该裂解区包含核苷酸11、12以及13。

如在此所使用,并且除非另外指明,当用来描述与第二核苷酸序列相关的第一核苷酸序列时,术语“互补”是指包含该第一核苷酸序列的寡核苷酸或多核苷酸在某些条件下与包含该第二核苷酸序列的寡核苷酸或多核苷酸杂交并且形成双链体结构的能力,如技术人员将理解。这类条件可以例如是严格条件,其中严格条件可以包括:400mM NaCl,40mMPIPES,pH 6.4,1mM EDTA,50℃或70℃持续12-16小时,随后洗涤(参见例如“分子克隆:实验室手册(Molecular Cloning:A Laboratory Manual),萨拉布鲁克(Sambrook)等人(1989)冷泉港实验室出版社)。其他条件如生物体内部可以遇到的生理相关的条件可以应用。技术人员将能够根据杂交核苷酸的最终应用,确定最适宜于测试两个序列的互补性的条件集合。

一种iRNA内(例如,如在此描述的一种dsRNA内)的互补序列包括包含第一核苷酸序列的寡核苷酸或多核苷酸与包含第二核苷酸序列的寡核苷酸或多核苷酸在一个或两个核苷酸序列的整个长度上的碱基配对。此类序列在此可以称作相对于彼此“完全互补”。然而,当一个第一序列在此称为相对于一个第二序列“基本上互补”时,这两个序列可以是完全互补的,或在对于高达30个碱基对的一种双链体杂交时,它们可以形成一个或多个但通常不多于5、4、3或2个错配的碱基对,同时保持在与其最终应用(例如经由一种RISC途径抑制基因表达)最相关的条件下杂交的能力。然而,当两个寡核苷酸被设计成在杂交时形成一个或多个单链突出端时,此类突出端不应该被认为是关于互补性确定的错配。例如,出于在此描述的目的,包含长度为21个核苷酸的一个寡核苷酸和长度为23个核苷酸的另一个寡核苷酸的一种dsRNA也可以称为“完全互补”,其中更长的寡核苷酸包含与更短的寡核苷酸完全互补的具有21个核苷酸的一个序列。

如在此使用的,就满足以上相对于它们杂交的能力而言的要求来说,“互补”序列还可以包括或完全形成自非沃森-克里克碱基对和/或从非天然的以及经修饰的核苷酸形成的碱基对。此类非沃森-克里克碱基对包括但不限于G:U摇摆碱基配对或Hoogstein碱基配对。

在此的术语“互补”、“完全互补”和“基本上互补”可以相对于一种dsRNA的有义链与反义链之间,或一种iRNA试剂的反义链与一个靶序列之间的碱基配对使用,如将从其使用的上下文理解。

如在此使用,与一种信使RNA(mRNA)的“至少部分基本上互补”的多核苷酸是指与感兴趣的mRNA(例如,编码APOC3的一种mRNA)的一个连续部分基本互补的多核苷酸。例如,如果序列与编码APOC3的一种mRNA的一个非中断部分基本上互补,则多核苷酸与一种APOC3mRNA的至少一个部分互补。

因此,在一些实施例中,本文披露的反义多核苷酸与靶APOC3序列完全互补。在其他实施例中,本文披露的有义链多核苷酸和/或反义多核苷酸与靶APOC3序列基本上互补,并且包含连续核苷酸序列,所述连续核苷酸序列在其整个长度上与SEQ ID NO:1-12中任一个的核苷酸序列的等效区域或SEQ ID NO:1-12中任一个的片段至少约80%互补,例如约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%或约99%互补。

在一个实施例中,本发明的RNAi试剂包括与反义多核苷酸基本互补的有义链,该反义多核苷酸与靶APOC3序列互补,并且其中该有义链多核苷酸包含连续核苷酸序列,所述连续核苷酸序列在其整个长度上与SEQ ID NO:1-12中任一个的核苷酸序列的等效区域或SEQ ID NO:1-12中任一个的片段至少约80%互补,例如约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%或约99%互补。在另一个实施例中,本发明的RNAi试剂包括与靶APOC3序列基本互补的反义链,并且包含连续核苷酸序列,所述连续核苷酸序列在其整个长度上与SEQ ID NO:1-12中任一个的核苷酸序列的等效区域或SEQ ID NO:1-12中任一个的片段至少约80%互补,例如约85%、约86%、约87%、约88%、约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%或约99%互补。

总体上,每一链的大部分的核苷酸是核糖核苷酸,但是如在此详述的,两条链的每一者或两者还可以包括一个或多个非核糖核苷酸,例如一种脱氧核糖核苷酸和/或一种经修饰的核苷酸。此外,“iRNA”可以包括化学修饰的核糖核苷酸。这些修饰可以包括在此披露的或在本领域中已知的所有类型的修饰。如在iRNA分子中所使用的任何此类修饰被“iRNA”所囊括用于本说明书以及权利要求书的目的。

在本发明的一个方面中,用于本发明的这些方法和组合物中的一种试剂是经由一种反义抑制机理抑制一种靶mRNA的一种单链反义核酸分子。该单链反义核酸分子与该靶mRNA内的一个序列互补。单链反义寡核苷酸可以通过与mRNA碱基配对并且物理性地阻碍翻译机器以化学计量的方式抑制翻译,参见,迪亚斯N.(Dias N.)N.等人,(2002)分子癌症治疗(Mol Cancer Ther)1:347-355。该单链反义核酸分子的长度可以是约15至约30个核苷酸并且具有与靶序列互补的序列。例如,该单链反义核酸分子可以包含来自在此描述的任一个反义序列的至少约15、16、17、18、19、20或更多个连续核苷酸的一个序列。

如在此使用的,“受试者”是动物,例如哺乳动物,包括灵长类动物(如人、非人灵长类动物(例如猴子和黑猩猩))、非灵长类(如牛、猪、骆驼、美洲驼、马、山羊、兔、绵羊、仓鼠、豚鼠、猫、狗、大鼠、小鼠、马、以及鲸)、或鸟(如鸭或鹅)。在一个实施例中,该受试者是人类,例如针对将受益于APOC3表达降低的疾病、障碍或病症而正接受治疗或评估的人;有风险患上将受益于APOC3表达降低的疾病、障碍或病症的人;患有将受益于APOC3表达降低的疾病、障碍或病症的人;和/或治疗患有将受益于如本文所述的APOC3表达降低的疾病、障碍或病症的人。

如此处使用的,术语“治疗(treating或treatment)”是指一种有益的或希望的结果,包括但不限于减轻或改善一种或多种症状,所述症状与不想要的或过量的APOC3表达相关,例如高甘油三酯血症(或高甘油三酯水平)。这类症状可包括例如皮肤症状(例如,发疹性黄色瘤);眼睛异常(例如,视网膜脂血症);肝脾肿大(肝脾增大);神经症状;或可能是轻微的胰腺炎发作的腹痛。与不想要的或过量的APOC3表达相关的其他症状也可能包括可能由高甘油三酯血症引起的、或与之相关的、或作为其结果的疾病、障碍或病症的任何症状,如非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗)、动脉粥样硬化、心血管疾病或胰腺炎。“治疗”还可以意指与不存在治疗情况下的预期存活相比,延长存活。

在受试者中的APOC3或疾病标志物或症状的水平背景下的术语“降低”是指此种水平的统计学上显著的降低。该降低可以例如是至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或更多,并且优选地低至对于不具有此种障碍的个体而言正常的范围内所接受的水平。

如在此所使用,当关于可以通过减少APOC3基因表达而治疗或改善其疾病、障碍或病症使用时,“预防(prevention)”或“预防(preventing)”是指降低受试者将发展与这样一种疾病、障碍或病症相关联的症状的可能性,例如,不想要的或过量的APOC3表达的症状,如高甘油三酯血症。例如,当具有高甘油三酯血症的一种或多种风险因素的个体相对于具有相同风险因素并且没有接受如在此所描述的治疗的群体,没有发展高甘油三酯血症或发展具有较小严重性的高甘油三酯血症时,发展高甘油三酯血症的可能性降低。没有发展一种疾病、障碍或病症,或者减少发展与该疾病、障碍或病症相关的症状(例如在临床上接受的比例上,针对该疾病或病症减少至少约10%),或表现出症状延迟(如延迟数天、周、月或年)被认为是有效的预防。

如本文所用,术语“载脂蛋白C3相关疾病”或“APOC3相关疾病”是由不想要的或过量的APOC3表达引起或与其有关的疾病、障碍或病症。术语“APOC3相关疾病”包括可通过降低APOC3表达来治疗或改善的疾病、障碍或病症。术语“APOC3相关疾病”包括高甘油三酯血症或高甘油三酯水平。

可能指示高甘油三酯血症的受试者(例如人类受试者)的血清中的甘油三酯水平描述于奥(Oh),R.C等人,(2007)美国家庭医生(American Family Physician),75(9):1366-1371中。确切地说,高甘油三酯血症可能与“边缘高血清甘油三酯水平”(即150至199mg/dL或1.70至2.25mmol/L);“高血清甘油三酯水平”(即200至499mg/dL或2.26至5.64mmol/L);或“非常高的甘油三酯水平”(即500mg/dL或更高(或5.65mmol/L或更高)相关。

在一个实施例中,APOC3相关疾病是原发性高甘油三酯血症。“原发性甘油三酯血症”是由环境或遗传原因引起的(例如,由于没有明显的潜在医学原因)。特征为原发性高甘油三酯血症的示例性疾病包括但不限于家族性乳糜微粒血症(I型高脂蛋白血症)、原发性混合性高脂血症(5型)、家族性高甘油三酯血症(4型高脂蛋白血症)、家族性混合型高脂蛋白血症(2B型)和家族性血脂异常蛋白血症(3型高脂蛋白血症)。

在一个实施例中,APOC3相关疾病是继发性高甘油三酯血症。“继发性甘油三酯血症”是由其他潜在的障碍和病症引起的、或与其相关的。这类障碍和/或病症包括例如肥胖症、代谢综合征、糖尿病、脂肪肝、饮酒、肾脏疾病、妊娠、非酒精性脂肪肝、甲状腺功能减退、副蛋白血症(如巨球蛋白血症中的高丙种球蛋白血症、骨髓瘤、淋巴瘤和淋巴细胞白血病)、自身免疫性疾病(如系统性红斑狼疮)、摄入药物(如抗逆转录病毒药物(包括利托那韦和洛匹那韦),以及抗精神病药物(包括氯氮平和奥氮平)),参见G.原(G.Yuan)等人(2007)加拿大医学协会期刊(Canadian Medical Association Journal)176(8):1113-1120。

任何可能是高甘油三酯血症的病因(例如继发性高甘油三酯血症)或可能是高甘油三酯血症的结果(例如原发性或继发性高甘油三酯血症)的障碍包括在术语“APOC3相关疾病”中。APOC3相关疾病的非限制性实例包括代谢紊乱,例如非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗);高血压、心血管疾病,例如动脉粥样硬化;和胰腺炎,例如急性胰腺炎。

II.本发明的iRNA

本发明提供抑制一种APOC3基因的表达的iRNA。在一个实施例中,iRNA试剂包括用于抑制细胞中APOC3基因表达的双链核糖核酸(dsRNA)分子,该细胞如一个受试者例如哺乳动物(如患有APOC3相关疾病如高甘油三酯血症的人)内的细胞。该dsRNA包括一个反义链,该反义链具有与在APOC3基因的表达中形成的mRNA的至少一个部分互补的一个互补区。互补性区域是约30个核苷酸或更小的长度(例如约30个、29个、28个、27个、26个、25个、24个、23个、22个、21个、20个、19个或18个核苷酸或更小的长度)。当与表达APOC3基因的细胞接触时,iRNA使APOC3基因(例如,人、灵长类动物、非灵长类动物或禽类APOC3基因)的表达抑制至少约10%,如通过例如PCR或基于支链DNA(bDNA)的方法,或通过基于蛋白质的方法,如通过免疫荧光分析,使用例如蛋白质印迹法或流式细胞术技术所测定。

dsRNA包括互补并在其中将使用dsRNA的条件下杂交以形成双链体结构的两个RNA链。dsRNA的一条链(反义链)包括一个互补区,该互补区与一个靶序列基本上互补并且通常完全互补。该靶序列可以来源于在一种APOC3基因的表达过程中形成的一种mRNA的序列。另一条链(有义链)包括与反义链互补的一个区,这样使得在适合的条件下组合时,这两条链杂交并形成双链体结构。如在此的其他地方所描述并且如本领域中所知,与处于单独的寡核苷酸上相反,dsRNA的互补序列还可以被包含作为单一核酸分子的自我互补区。

通常,双链结构是15到30个碱基对之间的长度,例如在15-29、15-28、15-27、15-26、15-25、15-24、15-23、15-22、15-21、15-20、15-19、15-18、15-17、18-30、18-29、18-28、18-27、18-26、18-25、18-24、18-23、18-22、18-21、18-20、19-30、19-29、19-28、19-27、19-26、19-25、19-24、19-23、19-22、19-21、19-20、20-30、20-29、20-28、20-27、20-26、20-25、20-24、20-23、20-22、20-21、21-30、21-29、21-28、21-27、21-26、21-25、21-24、21-23、或21-22个碱基对之间的长度。以上列举的范围和长度的范围与长度中间值也被想到成为本发明的部分。

类似地,靶标序列的互补区域是在15到30个核苷酸之间的长度,例如在15-29、15-28、15-27、15-26、15-25、15-24、15-23、15-22、15-21、15-20、15-19、15-18、15-17、18-30、18-29、18-28、18-27、18-26、18-25、18-24、18-23、18-22、18-21、18-20、19-30、19-29、19-28、19-27、19-26、19-25、19-24、19-23、19-22、19-21、19-20、20-30、20-29、20-28、20-27、20-26、20-25、20-24、20-23、20-22、20-21、21-30、21-29、21-28、21-27、21-26、21-25、21-24、21-23、或21-22个核苷酸之间的长度。以上引用的范围和长度的范围与长度中间值也意在成为本发明的部分。

在一些实施例中,dsRNA是在约15至约20个核苷酸之间的长度,或者在约25至约30个核苷酸之间长度。总之,dsRNA作为Dicer酶的底物是足够长的。例如本领域中所熟知的,长度长于约21-23个核苷酸的dsRNA可以用作Dicer的底物。如技术人员也将认识,被靶向用于裂解的RNA的区将最经常是较大RNA分子(经常是mRNA分子)的部分。在相关的情况下,mRNA靶的“一部分”是mRNA靶的连续序列,其长度足够以便允许其作为RNAi指导的切割的底物(即,经RISC途径的切割)。

本领域技术人员还将认识到,双链体区是dsRNA的一个主要功能部分,例如具有约9至36个碱基对,例如约10-36、11-36、12-36、13-36、14-36、15-36、9-35、10-35、11-35、12-35、13-35、14-35、15-35、9-34、10-34、11-34、12-34、13-34、14-34、15-34、9-33、10-33、11-33、12-33、13-33、14-33、15-33、9-32、10-32、11-32、12-32、13-32、14-32、15-32、9-31、10-31、11-31、12-31、13-32、14-31、15-31、15-30、15-29、15-28、15-27、15-26、15-25、15-24、15-23、15-22、15-21、15-20、15-19、15-18、15-17、18-30、18-29、18-28、18-27、18-26、18-25、18-24、18-23、18-22、18-21、18-20、19-30、19-29、19-28、19-27、19-26、19-25、19-24、19-23、19-22、19-21、19-20、20-30、20-29、20-28、20-27、20-26、20-25、20-24、20-23、20-22、20-21、21-30、21-29、21-28、21-27、21-26、21-25、21-24、21-23或21-22个碱基对的双链体区。因此,在一个实施例中,达到加工成靶向所希望的RNA以用于裂解的具有例如15-30个碱基对的一种功能双链体的程度,具有大于30个碱基对的双链体区的RNA分子或RNA分子的复合体是dsRNA。因此,技术人员将认识到在一个实施例中miRNA是dsRNA。在另一个实施例中,dsRNA不是天然存在的miRNA。在另一个实施例中,用于靶向APOC3表达的iRNA试剂不是在靶细胞中通过裂解较大dsRNA产生的。

如在此所描述的dsRNA可以进一步包含一个或多个单链核苷酸突出端,例如1、2、3或4个核苷酸。具有至少一个核苷酸突出端的dsRNA相对于其平端的对应物可以具有出乎意料地优越的抑制特性。核苷酸突出端可以包括核苷酸/核苷类似物(包括脱氧核苷酸/核苷)或由其组成。一个或多个突出端可以处于有义链、反义链或其任意组合上。另外,突出端的一个或多个核苷酸可以存在于dsRNA的反义或有义链的5’末端、3’末端或两个末端上。

dsRNA可以通过如进一步在以下所讨论的、本领域内已知的标准方法来进行合成,例如通过使用自动化的DNA合成仪,例如从例如生物研究(Biosearch)、应用生物系统公司(Applied Biosystems,Inc)可商购的合成仪。

本发明的iRNA化合物可以使用二步程序来制备。首先,分别制备该双链RNA分子的各链。然后,将这些组分链退火。siRNA化合物的各链可以使用溶液相或固相有机合成或这两者来制备。有机合成提供了以下优点,可以容易地制备包含非天然或经修饰的核苷酸的寡核苷酸链。本发明的单链寡核苷酸可以通过使用溶液相或固相有机合成或二者来制备。

一个方面,本发明的dsRNA包括至少两个核苷酸序列,一个有义序列和一个反义序列。该有义链和相应的反义链各自选自表4A、4B、5、8、9、10、11A、11B、12和13中任一项提供的序列的组。在这方面,这两个序列中的一个与这两个序列中的另一个互补,其中这些序列中的一个与在APOC3基因的表达中产生的mRNA的一个序列基本上互补。照此,在这个方面,dsRNA将包括两个寡核苷酸,其中一个寡核苷酸被描述为表4A、4B、5、8、9、10、11A、11B、12、和13中的任一个中的有义链,并且第二个寡核苷酸被描述为表4A、4B、5、8、9、10、11A、11B、12、和13中的任一个中的有义链的相应反义链。在一个实施例中,该dsRNA的基本上互补的序列被包含在单独的寡核苷酸上。在另一个实施例中,该dsRNA的基本上互补的序列被包含在单一寡核苷酸上。

应当理解的是,虽然表4A、4B、5、8、9、10、11A、11B、12、和13中的一些序列被描述为修饰的和/或共轭的序列,本发明的iRNA的RNA(如本发明的dsRNA)可以包括表4A、4B、5、8、9、10、11A、11B、12、和13中列出的任何一个序列,该序列是未修饰的、非共轭的,和/或不同于此处所述的修饰的和/或共轭的。

熟练的技术人员将很好的意识到,具有约20与23个碱基对之间(例如21个碱基对)的双链结构的dsRNA被奉为是尤其有效地诱导RNA干扰(厄尔巴瑟(Elbashir)等人,EMBO2001,20:6877-6888)。然而,其他人已经发现较短或较长的RNA双链体结构物也可以是有效的(朱(Chu)和拉纳(Rana)(2007)RNA 14:1714-1719;金姆(Kim)等人(2005)自然生物技术(Nat Biotech)23:222-226)。在上文描述的实施例中,由于表4A、4B、5、8、9、10、11A、11B、12、和13中的任一个中提供的寡核苷酸序列的性质,此处所述的dsRNA可以包括长度最小21个核苷酸的至少一条链。可以合理地预期,具有表4A、4B、5、8、9、10、11A、11B、12、和13中的任一个的序列之一的、在一个末端或两个末端减去仅仅数个核苷酸的更短的双链体与以上描述的dsRNA相比可以类似地有效。因此,在本发明的范围内构思这样的dsRNA,它们具有源自于表4A、4B、5、8、9、10、11A、11B、12、和13中的任一个的序列之一的至少15个、16个、17个、18个、19个、20个或更多个连续核苷酸的序列并且在它们抑制APOC3基因表达不多于约5%、10%、15%、20%、25%、或30%的能力方面与包括全序列的dsRNA不同。

此外,表4A、4B、5、8、9、10、11A、11B、12、和13中任一个提供的RNA在APOC3转录物中鉴别出易受RISC介导的裂解的一个或多个位点。因此,本发明进一步体现了在这些位点中的一个内靶向的iRNA。如在此所使用,如果iRNA在具体位点内的任何地方促进转录物的裂解,则称该iRNA在RNA转录物的具体位点内靶向。这种iRNA通常将包括来自表4A、4B、5、8、9、10、11A、11B、12、和13中任一个提供的一个序列的至少约15个连续核苷酸,这些核苷酸联接到取自与APOC3基因中的选定序列相邻的区的另外核苷酸序列上。

虽然靶序列的长度通常是约15-30个核苷酸,但在用于引导任何给定靶RNA的裂解的这个范围内的具体序列适用性上存在广泛的变化。此处所列出的各种软件包和准则提供了用于鉴别对于任何给定的基因靶的最佳靶标序列的准则,但还可以采取经验方法,其中一个给定尺寸(如一个非限制性实例,21个核苷酸)的“窗口”或“掩模”被照字面地或象征性(包括,例如计算机模拟)地放置在靶RNA序列上,以鉴别可以充当靶标序列的在该尺寸范围内的序列。通过将该序列“窗口”向初始靶序列位置的上游或下游渐进地移动一个核苷酸,可以鉴别出下一个潜在的靶序列,直到针对所选择的任何给定靶尺寸鉴别出全套可能的序列。这个过程(加上为了鉴定最佳执行的那些序列的所鉴定的序列的系统合成和测试(使用在此所述的或如本领域中已知的测定))可以鉴定当用一种iRNA试剂靶向时介导靶基因表达的最好抑制的那些RNA序列。因此,虽然例如在表4A、4B、5、8、9、10、11A、11B、12、和13中的任一个中鉴别的序列表示有效的靶序列,但应想到的是可以通过向给定序列的上游或下游渐进地“使窗口行走”一个核苷酸以鉴别具有同等或更好抑制特征的序列来实现抑制效率的进一步优化。

此外,对于例如在表4A、4B、5、8、9、10、11A、11B、12、和13中的任一个中鉴别的任何序列应想到的是,可以通过系统添加或去除核苷酸以产生更长或更短的序列并且测试通过使具有更长或更短尺寸的窗口从该点向靶RNA上方或下方行走所产生的那些序列来实现进一步优化。再次地,使这种方法与产生新候选物靶标结合,同时基于如本领域中所知和/或如在此所描述的抑制测定中的那些靶序列测试iRNA的有效性,可以引起抑制效率的进一步改善。再者,可以例如通过引入如在此所描述或如本领域中所知的修饰核苷酸、添加或改变突出端或如本领域中所知和/或在此讨论的其他修饰,调节此类优化的序列以便进一步优化分子(例如,增加血清稳定性或循环半衰期、增加热稳定性、增强跨膜递送、靶向特定位置或细胞类型、增加与沉默途径酶的相互作用、增加核内体释放)作为表达抑制剂。

如在此所描述的iRNA可以含有与靶序列的一个或多个错配。在一个实施例中,如在此所描述的iRNA含有不多于3个错配。如果iRNA的反义链含有与靶序列的错配,则优选错配区域不应当位于互补区的中心内。如果iRNA的反义链含有与靶序列的错配,则优选错配被局限在离互补区的5’-端或3’-端的最后5个核苷酸内。例如,对于23个核苷酸的iRNA试剂,与APOC3基因的一个区互补的链通常在中心13个核苷酸内不含任何错配。本文所述的方法或本领域已知的方法可以用来确定含有相对于靶标序列的错配的iRNA是否有效抑制APOC3基因表达。考虑带错配的iRNA在抑制APOC3基因表达的功效方面是重要的,尤其在已知APOC3基因中的特定互补区域在群体内部具有多态性序列变异时。

III.本发明的修饰的iRNA

在一个实施例中,本发明的iRNA的RNA(例如dsRNA)是未经修饰的,并且不包含例如本领域中已知的和在此所述的化学修饰和/或共轭。在另一个实施例中,本发明的iRNA例如dsRNA的RNA被化学修饰以增强稳定性或其他有益特征。在本发明的某些实施例中,本发明的iRNA的基本上所有核苷酸是修饰的。在本发明的其他实施例中,本发明的iRNA的所有核苷酸都是修饰的核苷酸。其中“基本上所有核苷酸是修饰的”本发明的iRNA是大部分但不是全部修饰的,并且可以包含不多于5、4、3、2或1个未修饰的核苷酸。

在本发明的一些方面,本发明的iRNA的基本上所有核苷酸都被修饰,并且iRNA试剂包含不超过10个包含2’-氟代修饰(例如,不超过9个2’-氟代修饰、不超过8个2’-氟代修饰、不超过7个2’-氟代修饰、不超过6个2’-氟代修饰、不超过5个2’-氟代修饰、不超过4个2’-氟代修饰、不超过5个2’-氟代修饰、不超过4个2’-氟代修饰、不超过3个2’-氟代修饰、或不超过2个2’-氟代修饰)的核苷酸。例如,在一些实施例中,有义链包含不超过4个包含2’-氟代修饰(例如不超过3个2’-氟代修饰,或不超过2个2’-氟代修饰)的核苷酸。在其他实施例中,反义链包含不超过6个包含2’-氟代修饰(例如,不超过5个2’-氟代修饰、不超过4个2’-氟代修饰、不超过4个2’-氟代修饰、或不超过2个2’-氟代修饰)的核苷酸。在本发明的其他方面,本发明的iRNA的所有核苷酸都被修饰,并且iRNA试剂包含不超过10个包含2’-氟代修饰(例如,不超过9个2’-氟代修饰、不超过8个2’-氟代修饰、不超过7个2’-氟代修饰、不超过6个2’-氟代修饰、不超过5个2’-氟代修饰、不超过4个2’-氟代修饰、不超过5个2’-氟代修饰、不超过4个2’-氟代修饰、不超过3个2’-氟代修饰、或不超过2个2’-氟代修饰)的核苷酸。

本发明所表征的核酸可以通过本领域内良好建立的方法来进行合成和/或修饰,例如描述于“当前核酸化学方案(Current protocols in nucleic acid chemistry)”,比尤克居(Beaucage),S.L.(编),约翰威利父子公司(John Wiley&Sons,Inc.),纽约,纽约州,美国中的那些,特此通过引用将其结合于此。修饰包括,例如,末端修饰,例如,5’-端修饰(磷酸化、共轭、倒置键联)或3’-端修饰(共轭、DNA核苷酸、倒置键联等);碱基修饰,例如,置换为稳定性碱基、去稳定性碱基或与扩充的配伍物库发生碱基配对的碱基、移除碱基(脱碱基核苷酸)、或共轭的碱基;糖修饰(例如,在2’位置或4’位置)或糖的置换;和/或骨架修饰,包括磷酸二酯键联的修饰或置换。有用于在此所描述的这些实施例的iRNA化合物的具体实例包括,但不限于含有修饰的骨架或无天然核苷间键联的RNA。具有修饰的骨架的RNA包括在骨架中不具有磷原子的那些,连同其他。出于本说明书的目的和如有时本领域中谈及,也可以将在其核苷间骨架中不具有磷原子的修饰RNA视为寡核苷。在一些实施例中,修饰的iRNA将在其核苷间骨架中具有磷原子。

修饰的RNA骨架包括例如硫代磷酸酯、手性硫代磷酸酯、二硫代磷酸酯、磷酸三酯、氨基烷基磷酸三酯、甲基和其他烷基膦酸酯,包括3’-亚烷基膦酸酯和手性膦酸酯、次膦酸酯、磷酰胺酯,包括3’-氨基磷酰胺酯和氨基烷基磷酰胺酯、硫代羰基磷酰胺酯、硫代羰基烷基膦酸酯、硫代羰基烷基磷酸三酯和具有正常3’-5’键的硼烷磷酸酯、这些酯的2’-5’连接的类似物,和具有反转极性的那些酯,其中相邻对的核苷单位为3’-5’至5’-3’或2’-5’至5’-2’连接。还包括不同盐、混合盐以及游离酸形式。

教授制备以上含磷键联的代表性美国专利包括但不限于:美国专利号3,687,808;4,469,863;4,476,301;5,023,243;5,177,195;5,188,897;5,264,423;5,276,019;5,278,302;5,286,717;5,321,131;5,399,676;5,405,939;5,453,496;5,455,233;5,466,677;5,476,925;5,519,126;5,536,821;5,541,316;5,550,111;5,563,253;5,571,799;5,587,361;5,625,050;6,028,188;6,124,445;6,160,109;6,169,170;6,172,209;6,239,265;6,277,603;6,326,199;6,346,614;6,444,423;6,531,590;6,534,639;6,608,035;6,683,167;6,858,715;6,867,294;6,878,805;7,015,315;7,041,816;7,273,933;7,321,029;以及美国专利RE39464,前述专利的每个的全部内容特此通过引用结合在此。

其中不包含磷原子的修饰的RNA骨架具有由短链烷基或环烷基核苷间键、混合杂原子和烷基或环烷基核苷间键或者一个或多个短链杂原子核苷间键或杂环核苷间键形成的骨架。这些包括具有以下结构的那些:吗啉代键联(从核苷的糖部分中部分地形成);硅氧烷骨架;硫化物、亚砜和砜骨架;甲酰乙酰基和硫代甲酰乙酰基骨架;亚甲基甲酰乙酰基和硫代甲酰乙酰基骨架;含烯的骨架;氨基磺酸盐骨架;亚甲亚氨基和亚甲肼基骨架;磺酸酯和磺酰胺骨架;酰胺骨架;以及具有混合N、O、S和CH

教授制备以上寡核苷的代表性美国专利包括但不限于:美国专利号5,034,506;5,166,315;5,185,444;5,214,134;5,216,141;5,235,033;5,64,562;5,264,564;5,405,938;5,434,257;5,466,677;5,470,967;5,489,677;5,541,307;5,561,225;5,596,086;5,602,240;5,608,046;5,610,289;5,618,704;5,623,070;5,663,312;5,633,360;5,677,437;以及5,677,439,前述专利的每个的全部内容特此通过引用结合在此。

在其他实施例中,构思了用于iRNA的适合的RNA模拟物,其中核苷酸单位的糖和核苷间键联即骨架被置换为新基团。维持碱基单元用于与适当的核酸靶化合物杂交。一种这样的低聚化合物(已经显示具有优异杂交特性的RNA模拟物)被称为肽核酸(PNA)。在PNA化合物中,RNA的糖骨架被含有酰胺的骨架置换,具体是氨基乙基甘氨酸骨架。这些核碱基得以保持并且直接或间接地结合至该骨架的酰胺部分的氮杂氮原子上。教授制备以上PNA化合物的代表性美国专利包括但不限于:美国专利号5,539,082;5,714,331;以及5,719,262,前述专利的每个的全部内容特此通过引用结合在此。适合用于本发明的iRNA中的另外PNA化合物被描述于例如尼尔森(Nielsen)等人,科学(Science),1991,254,1497-1500中。

本发明中表征的一些实施例包括具有硫代磷酸酯骨架的RNA和具有杂原子骨架的寡核苷,并且尤其上文所参考的美国专利号5,489,677的--CH

修饰的RNA还可以含有一个或多个取代的糖部分。在此表征的iRNA(例如dsRNA)可以在2’位置包括以下之一:OH;F;O-、S-或N-烷基;O-、S-或N-烯基;O-、S-或N-炔基;或O-烷基-O-烷基,其中该烷基、烯基以及炔基可以是被取代的或未被取代的C

其他修饰包括2’-甲氧基(2’-OCH

iRNA还可以包括核碱基(在本领域中经常简称为“碱基”)修饰或取代。如在此所使用,“非修饰”或“天然”核碱基包括嘌呤碱基腺嘌呤(A)和鸟嘌呤(G),以及嘧啶碱基胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。修饰的核碱基包括其他合成核碱基和天然核碱基,如脱氧-胸腺嘧啶(dT);5-甲基胞嘧啶(5-me-C);5-羟甲基胞嘧啶;黄嘌呤;次黄嘌呤;2-氨基腺嘌呤;腺嘌呤和鸟嘌呤的6-甲基衍生物和其他烷基衍生物;腺嘌呤和鸟嘌呤的2-丙基衍生物和其他烷基衍生物;2-硫代尿嘧啶;2-硫代胸腺嘧啶和2-硫代胞嘧啶;5-卤代尿嘧啶和胞嘧啶;5-炔基尿嘧啶和胞嘧啶;6-偶氮基尿嘧啶、6-偶氮基胞嘧啶和6-偶氮基胸腺嘧啶;5-尿嘧啶(假尿嘧啶);4-硫代尿嘧啶;8-卤代、8-氨基、8-巯基、8-硫代烷基、8-羟基和其他8-取代的腺嘌呤和鸟嘌呤;5-卤代(具体地5-溴代)、5-三氟甲基和其他5-取代的尿嘧啶和胞嘧啶;7-甲基鸟嘌呤和7-甲基腺嘌呤;8-氮杂鸟嘌呤和8-氮杂腺嘌呤;7-脱氮鸟嘌呤和7-脱氮腺嘌呤以及3-脱氮鸟嘌呤和3-脱氮腺嘌呤。进一步的核碱基包括披露于美国专利号3,687,808中的那些,披露于生物化学、生物技术和医药(Biochemistry,Biotechnology andMedicine)赫德威(Herdewijn),P.编辑,Wiley-VCH,2008中的修饰核苷(ModifiedNucleosides)中的那些;披露于聚合物科学与工程的简明百科全书(The ConciseEncyclopedia Of Polymer Science And Engineering),第858-859页,克奥赤威兹(Kroschwitz,J.L,)编辑,约翰威利父子公司(John Wiley&Sons),1990中的那些;由英格力士(Englisch)等人,应用化学(Angewandte Chemie),国际版,1991,30,613披露的那些;以及由桑格威(Sanghvi,Y S.)第15章,dsRNA研究与应用(dsRNA Research andApplications),第289-302页,克鲁克(Crooke,S.T.)和黎布鲁(Lebleu,B.,),编辑,CRC出版社,1993披露的那些。这些核碱基中的某些对于提高在本发明中出现的低聚化合物的结合亲和力特别有用。这些碱基包括5-取代的嘧啶、6-氮杂嘧啶以及N-2、N-6和0-6取代的嘌呤,包括2-氨基丙基腺嘌呤、5-丙炔基尿嘧啶和5-丙炔基胞嘧啶。已经显示5-甲基胞嘧啶取代使核酸双链体稳定性增加0.6℃-1.2℃(桑格威Y.S.、克鲁克S.T.和黎布鲁B.编著,dsRNA研究与应用,CRC出版社,波卡拉顿(Boca Raton),1993,第276-278页)并且是示例性碱基取代,甚至更具体地当与2’-O-甲氧基乙基糖修饰组合时。

教授制备以上修饰的核碱基以及其他修饰的核碱基中的某些的代表性美国专利包括但不限于上述的美国专利号3,687,808;4,845,205;5,130,30;5,134,066;5,175,273;5,367,066;5,432,272;5,457,187;5,459,255;5,484,908;5,502,177;5,525,711;5,552,540;5,587,469;5,594,121;5,596,091;5,614,617;5,681,941;5,750,692;6,015,886;6,147,200;6,166,197;6,222,025;6,235,887;6,380,368;6,528,640;6,639,062;6,617,438;7,045,610;7,427,672;以及7,495,088,前述专利的每个的全部内容特此通过引用结合在此。

一种iRNA的RNA还可以被修饰成包含一个或多个双环糖部分。“双环糖”是通过两个原子桥联而修饰的呋喃糖基环。“双环核苷”(“BNA”)是具有糖部分的核苷,该糖部分包含连接糖环的两个碳原子的桥,从而形成一种双环环系统。在某些实施例中,该桥连接糖环的4’-碳与2’-碳。因此,在一些实施例中,本发明的一种试剂可以包含一种或多种锁核酸(LNA)。锁核酸是具有一个修饰的核糖部分的核苷酸,其中该核糖部分包含连接2’碳和4’碳的额外桥。换言之,LNA是包含含有4’-CH2-O-2’桥的双环糖部分的核苷酸。这个结构有效地将该核糖“锁”在3’-内切结构构象中。向siRNA添加锁核酸已经显示增加血清中的siRNA稳定性并且减少脱靶效应(埃尔曼(Elmen),J.等人,(2005)核酸研究(Nucleic AcidsResearch)33(1):439-447;穆克(Mook),OR.等人,(2007)分子癌症疗法(Mol Canc Ther)6(3):833-843;格伦韦勒(Grunweller),A.等人,(2003)核酸研究(Nucleic AcidsResearch)31(12):3185-3193)。用于在本发明的多核苷酸中使用的双环核苷的实例包括不限于在4’与2’核糖基环原子之间包含桥的核苷。在某些实施例中,本发明的反义多核苷酸试剂包含一个或多个双环核苷,该一个或多个双环核苷包含一个4’至2’桥。这种4’至2’桥联双环核苷的实例包括但不限于4’-(CH2)—O-2’(LNA);4’-(CH2)—S-2’;4’-(CH2)2—O-2’(ENA);4’-CH(CH3)—O-2’(还称为“限制性乙基”或“cEt”)、以及4’-CH(CH2OCH3)—O-2’(以及其类似物;参见例如美国专利号7,399,845);4’-C(CH3)(CH3)—O-2’(以及其类似物;参见例如美国专利号8,278,283);4’-CH2—N(OCH3)-2’(以及其类似物;参见例如美国专利号8,278,425);4’-CH2—O—N(CH3)-2’(参见例如,美国专利公开号2004/0171570);4’-CH2—N(R)—O-2’,其中R是H、C1-C12烷基或一个保护基团(参见例如美国专利号7,427,672);4’-CH2—C(H)(CH3)-2’(参见例如,恰托帕底耶耶(Chattopadhyaya)等人,有机化学杂志(J.Org.Chem.),2009,74,118-134);以及4’-CH2—C(=CH2)-2’(以及其类似物;参见例如美国专利号8,278,426)。前述的每个的全部内容特此通过引用结合在此。

传授制备锁核酸核苷酸的另外代表性美国专利和美国专利公开包括但不限于以下:美国专利号6,268,490;6,525,191;6,670,461;6,770,748;6,794,499;6,998,484;7,053,207;7,034,133;7,084,125;7,399,845;7,427,672;7,569,686;7,741,457;8,022,193;8,030,467;8,278,425;8,278,426;8,278,283;US 2008/0039618;以及US2009/0012281,前述专利的每个的全部内容特此通过引用结合在此。

任何上述双环核苷可以被制备为具有一种或多种立体化学糖构型,包括例如α-L-呋喃核糖及β-D-呋喃核糖(参见WO 99/14226)。

一种iRNA的RNA还可以被修饰成包含一个或多个限制性乙基核苷酸。如在此所使用,“限制性乙基核苷酸”或“cEt”是包含一个双环糖部分的锁核酸,该双环糖部分包含一个4’-CH(CH3)-O-2’桥。在一个实施例中,一个限制性乙基核苷酸是呈S构象,在此称为“S-cEt”。

本发明的一种iRNA还可以包含一个或多个“构象限制的核苷酸”(“CRN”)。CRN是具有连接核糖的C2’和C4’碳或核糖的C3和-C5’碳的一个连接子的核苷酸类似物。CRN将核糖环锁定成一种稳定构象且增加对mRNA的杂交亲和力。该连接子具有足够长度以将氧置于一个最佳位置中以获得稳定性和亲和力,从而产生更少核糖环缩拢。

传授制备某种以上标记的CRN的代表性公开包括但不限于:美国专利公开号2013/0190383;以及PCT公开WO 2013/036868,前述专利的每个的全部内容特此通过引用结合在此。

本发明的一种iRNA的一个或多个核苷酸还可以包含一个羟基甲基取代的核苷酸。一个“羟基甲基取代的核苷酸”是一个无环2’-3’-开环-核苷酸,还称为一种“解锁核酸”(“UNA”)修饰。

教授制备以上UNA的代表性美国公开包括但不限于:美国专利号8,314,227;和美国专利公开号2013/0096289;2013/0011922;以及2011/0313020,前述专利的每个的全部内容特此通过引用结合在此。

对RNA分子的末端的潜在的稳定化修饰可包括N-(乙酰基氨基己酰基)-4-羟基脯氨醇(Hyp-C6-NHAc)、N-(己酰基-4-羟基脯氨醇(Hyp-C6)、N-(乙酰基-4-羟基脯氨醇(Hyp-NHAc)、胸苷-2’-0-脱氧胸苷(醚)、N-(氨基己酰基)-4-羟基脯氨醇(Hyp-C6-氨基)、2-二十二醇基(docosanoyl)-尿苷-3”-磷酸酯、反向dT(idT)及其他。这种修饰的披露可以在PCT公开号WO 2011/005861中找到。

A.包含本发明的基序的修饰iRNA

在本发明的某些方面,本发明的双链RNAi试剂包括例如在2012年11月16日提交的WO 2013/075035中披露的具有化学修饰的试剂,其全部内容通过引用结合在此。正如在此和在PCT公开号WO2013/075035中显示,可以通过将在三个连续核苷酸上具有三个相同修饰的一个或多个基序引入到RNAi试剂的一条有义链和/或反义链中、特别是在裂解位点处或附近而获得一种优越结果。在一些实施例中,该RNAi试剂的该有义链和反义链可以另外的方式被完全修饰。这些基序的引入中断了该有义链和/或反义链的修饰模式(如果存在的话)。该RNAi试剂可以任选地与例如在该有义链上的GalNAc衍生物配体共轭。所得到的RNAi试剂呈现优越的基因沉默活性。

更具体地说,出人意料地发现,当该双链RNAi试剂的有义链和反义链被完全修饰而在RNAi试剂的至少一条链的裂解位点处或附近具有在三个连续核苷酸上具有三个相同修饰的一个或多个基序时,该RNAi试剂的基因沉默活性被卓越地增强。

因此,本发明提供能够在体内抑制一种靶基因(即,载脂蛋白C3(APOC3)基因)的表达的双链RNAi试剂。该RNAi试剂包含一个有义链和一个反义链。该RNAi试剂的每条链的长度可以在12-30个核苷酸范围内。例如,每条链的长度可以在14-30个核苷酸之间、17-30个核苷酸之间、25-30个核苷酸之间、27-30个核苷酸之间、17-23个核苷酸之间、17-21个核苷酸之间、17-19个核苷酸之间、19-25个核苷酸之间、19-23个核苷酸之间、19-21个核苷酸之间、21-25个核苷酸之间或21-23个核苷酸之间。

该有义链和该反义链典型地形成一种双链体双链RNA(“dsRNA”),在此又称为“RNAi试剂”。RNAi试剂的双链体区的长度可以是12-30个核苷酸对。例如,该双链体区的长度可以在14-30个核苷酸对之间、17-30个核苷酸对之间、27-30个核苷酸对之间、17-23个核苷酸对之间、17-21个核苷酸对之间、17-19个核苷酸对之间、19-25个核苷酸对之间、19-23个核苷酸对之间、19-21个核苷酸对之间、21-25个核苷酸对之间或21-23个核苷酸对之间。在另一个实例中,该双链体区的长度是选自15、16、17、18、19、20、21、22、23、24、25、26以及27个核苷酸。

在一个实施例中,该RNAi试剂可以在一条或两条链的3’-端、5’-端或两端处含有一个或多个突出端区和/或封端基团。突出端可以具有1-6个核苷酸长度,例如2-6个核苷酸长度、1-5个核苷酸长度、2-5个核苷酸长度、1-4个核苷酸长度、2-4个核苷酸长度、1-3个核苷酸长度、2-3个核苷酸长度或1-2个核苷酸长度。这些突出端可以是一条链比另一条链更长的结果,或具有相同长度的两条链交错的结果。该突出端可以与靶mRNA形成错配,或它可以与被靶向的基因序列互补或可以是另一个序列。第一链和第二链还可以例如通过另外的碱基连接以形成一个发夹或通过其他非碱基接头连接。

在一个实施例中,该RNAi试剂的突出端区中的核苷酸可以各自独立地是修饰的或未修饰的核苷酸,包括(但不限于)被2’-糖修饰的,如2-F、2’-O-甲基、胸苷(T)、2’-O-甲氧基乙基-5-甲基尿苷(Teo)、2’-O-甲氧基乙基腺苷(Aeo)、2’-O-甲氧基乙基-5-甲基胞苷(m5Ceo)、及其任何组合。例如,TT可以是任一链上的任一端的一个突出端序列。该突出端可以与靶mRNA形成错配,或它可以与被靶向的基因序列互补或可以是另一个序列。

在该RNAi试剂的有义链、反义链或这两条链处的5’-突出端或3’-突出端可以被磷酸化。在一些实施例中,该突出端区(一个或多个)含有两个在这两个核苷酸之间具有硫代磷酸酯的核苷酸,其中这两个核苷酸可以是相同或不同的。在一个实施例中,该突出端存在于有义链、反义链或两条链的3’端处。在一个实施例中,这个3’-突出端存在于反义链中。在一个实施例中,这个3’-突出端存在于有义链中。

该RNAi试剂可以仅含有单个突出端,该突出端可以加强该RNAi的干扰活性而不影响其总稳定性。例如,单链突出端可以位于有义链的3’-末端处,或替代地位于反义链的3’-末端处。该RNAi还可以具有位于该反义链的5’-端(或该有义链的3’-端)处的平端,或反之亦然。一般来说,该RNAi的反义链在3’-端处具有核苷酸突出端,并且5’-端是平的。虽然不希望受理论约束,但该反义链的5’-端处的不对称平端和该反义链的3’-端突出端有利于引导链加载到RISC过程中。

在一个实施例中,该RNAi试剂是具有19个核苷酸长度的双端平物,其中该有义链在从5’端起的位置7、位置8、位置9处含有在三个连续核苷酸上具有三个2’-F修饰的至少一个基序。该反义链在从5’端起的位置11、位置12、位置13处含有在三个连续核苷酸上具有三个2’-O-甲基修饰的至少一个基序。

在另一个实施例中,该RNAi试剂是具有20个核苷酸长度的双端平物,其中该有义链在从5’端起的位置8、位置9、位置10处含有在三个连续核苷酸上具有三个2’-F修饰的至少一个基序。该反义链在从5’端起的位置11、位置12、位置13处含有在三个连续核苷酸上具有三个2’-O-甲基修饰的至少一个基序。

在又另一个实施例中,该RNAi试剂是具有21个核苷酸长度的双端平物,其中该有义链在从5’端起的位置9、位置10、位置11处含有在三个连续核苷酸上具有三个2’-F修饰的至少一个基序。该反义链在从5’端起的位置11、位置12、位置13处含有在三个连续核苷酸上具有三个2’-O-甲基修饰的至少一个基序。

在一个实施例中,该RNAi试剂包含21个核苷酸的有义链和23个核苷酸的反义链,其中该有义链在从5’端起的位置9、位置10、位置11处含有在三个连续核苷酸上具有三个2’-F修饰的至少一个基序;该反义链在从5’端起的位置11、位置12、位置13处含有在三个连续核苷酸上具有三个2’-O-甲基修饰的至少一个基序;其中该RNAi试剂的一端是平的,而另一端包含2个核苷酸的突出端。优选地,该2个核苷酸的突出端在该反义链的3’-端处。

当该2个核苷酸的突出端在该反义链的3’-端处时,在末端的三个核苷酸之间可以存在两个硫代磷酸酯核苷酸间键联,其中这三个核苷酸中的两个是突出端核苷酸,并且第三个核苷酸是紧挨着该突出端核苷酸的配对的核苷酸。在一个实施例中,该RNAi试剂在该有义链的5’-端和在该反义链的5’-端处均另外地具有在末端三个核苷酸之间的两个硫代磷酸酯核苷酸间键联。在一个实施例中,该RNAi试剂的有义链和反义链中的每个核苷酸(包括作为基序的一部分的核苷酸)是修饰的核苷酸。在一个实施例中,每个残基独立地被例如交替基序中的2’-O-甲基或3’-氟代修饰。任选地,该RNAi试剂进一步包含一个配体(优选地GalNAc

在一个实施例中,该RNAi试剂包含一个有义链和一个反义链,其中该有义链的长度是25-30个核苷酸残基,其中从5’末端核苷酸(位置1)开始,第一链的位置1至23包含至少8个核糖核苷酸;该反义链的长度是36-66个核苷酸残基,并且从3’末端核苷酸开始,在与有义链的位置1-23配对的位置上包含至少8个核糖核苷酸以形成一种双链体;其中反义链的至少3’末端核苷酸与有义链未配对,并且高达6个连续的3’末端核苷酸与有义链未配对,从而形成具有1-6个核苷酸的3’单链突出端;其中反义链的5’末端包含从10-30个连续的与有义链未配对的核苷酸,从而形成10-30个核苷酸的单链5’突出端;其中当出于最大互补性对准有义链和反义链时,至少该有义链5’末端核苷酸和3’末端核苷酸与反义链的核苷酸碱基配对,从而在有义链与反义链之间形成基本上双链体的区;并且沿着反义链长度的至少19个核糖核苷酸,反义链与靶RNA充分互补,以便当双链核酸被引入到哺乳动物细胞中时减少靶基因表达;并且其中该有义链含有在三个连续核苷酸上具有三个2’-F修饰的至少一个基序,其中这些基序中的至少一个出现在裂解位点处或附近。该反义链在裂解位点处或附近含有在三个连续核苷酸上具有三个2’-O-甲基修饰的至少一个基序。

在一个实施例中,该RNAi试剂包含有义链和反义链,其中该RNAi试剂包含一条第一链和一条第二链,该第一链具有至少25个和至多29个核苷酸的长度,该第二链具有至多30个核苷酸与从5’端起在位置11、位置12、位置13处在三个连续核苷酸上具有三个2’-O-甲基修饰的至少一个基序;其中该第一链的3’端和该第二链的5’端形成一个平端并且该第二链在其3’端处比该第一链长1-4个核苷酸,其中双链体区的长度是至少25个核苷酸,并且沿着该第二链长度的至少19个核苷酸,该第二链与靶mRNA充分互补,以便当该RNAi试剂被引入到哺乳动物细胞中时减少靶基因表达,并且其中RNAi试剂的dicer裂解优选产生包含该第二链的3’端的siRNA,从而在该哺乳动物中减少靶基因的表达。任选地,该RNAi试剂进一步包含一个配体。

在一个实施例中,该RNAi试剂的有义链含有在三个连续核苷酸上具有三个相同修饰的至少一个基序,其中这些基序中的一个出现在该有义链中的裂解位点处。

在一个实施例中,该RNAi试剂的反义链也可以含有在三个连续核苷酸上具有三个相同修饰的至少一个基序,其中这些基序中的一个出现在该反义链中的裂解位点处或附近。

对于具有长度是17-23个核苷酸的双链体区的RNAi试剂,反义链的裂解位点典型地在从5’-端起的10、11和12位置周围。因此,具有三个相同修饰的这些基序可以出现在反义链的9、10、11位置;10、11、12位置;11、12、13位置;12、13、14位置;或13、14、15位置,计数从反义链的5’-端起从第一个核苷酸开始,或计数从反义链的5’-端起从双链体区内的第一个配对的核苷酸开始。该反义链中的裂解位点还可以根据该RNAi的从5’端起的双链体区的长度而变化。

该RNAi试剂的有义链可以含有在该链的裂解位点处的在三个连续核苷酸上具有三个相同修饰的至少一个基序;并且该反义链可以具有在该链的裂解位点处或附近的在三个连续核苷酸上具有三个相同修饰的至少一个基序。当该有义链和该反义链形成一种dsRNA双链体时,该有义链和该反义链可以被如此对准,以使得在该有义链上具有三个核苷酸的一个基序和在该反义链上具有三个核苷酸的一个基序具有至少一个核苷酸重叠,即该有义链中的该基序的三个核苷酸中的至少一者与该反义链中的该基序的三个核苷酸中的至少一者形成碱基对。可替代地,至少两个核苷酸可以重叠,或所有三个核苷酸均可以重叠。

在一个实施例中,该RNAi试剂的有义链可以含有在三个连续核苷酸上具有三个相同修饰的多于一个基序。第一基序可以出现在该链的裂解位点处或附近并且其他基序可以是翼修饰。术语“翼修饰”在此是指出现在链的与同一链裂解位点处或附近的基序分开的另一个部分处的一个基序。该翼修饰或者与该第一基序相邻,或者被至少一个或多个核苷酸分隔。当这些基序与彼此紧紧相邻时,则这些基序的化学性质不同于彼此,并且当这些基序被一个或多个核苷酸分隔时,则化学性质可以是相同或不同的。可以存在两个或更多个翼修饰。例如,当存在两个翼修饰时,每个翼修饰可以存在于相对于在裂解位点处或附近的该第一基序的一端处或该前导基序的任一侧上。

如同有义链,该RNAi试剂的反义链可以含有多于一个在三个连续核苷酸上具有三个相同修饰的基序,这些基序中的至少一者出现在该链的裂解位点处或附近。这个反义链也可以在一个比对中含有一个或多个与可以在有义链上存在的翼修饰类似的翼修饰。

在一个实施例中,该RNAi试剂的有义链或反义链上的翼修饰典型地在该链的3’端、5’端或两端处不包括前一个或两个末端核苷酸。

在另一个实施例中,该RNAi试剂的有义链或反义链上的翼修饰典型地在该链的3’端、5’端或两端处的双链体区内不包括前一个或两个配对的核苷酸。

当该RNAi试剂的有义链和反义链各自含有至少一个翼修饰时,该翼修饰可以落在该双链体区的同一端上,并且具有一个、两个或三个核苷酸的重叠。

当该RNAi试剂的有义链和反义链各自包含至少两个翼侧修饰时,该有义链和该反义链可以被比对为使得各自来自一条链的两个修饰落在该双链体区的一端上,具有一个、两个或三个核苷酸的一个重叠;各自来自一条链的两个修饰落在该双链体区的另一端上,具有一个、两个或三个核苷酸的重叠;各自来自一条链的两个修饰落在该前导基序的任一侧上,在该双链体区具有一个、两个或三个核苷酸的重叠。

在一个实施例中,该RNAi试剂的有义链和反义链中的每个核苷酸(包括作为基序的一部分的核苷酸)可以被修饰。每个核苷酸可以用相同或不同的修饰来修饰,这些修饰可以包括:一个或两个非连接磷酸氧的一个或多个改变和/或一个或多个连接磷酸氧的改变;核糖糖的一种组分的改变,例如,核糖糖上的2’羟基的改变;用“脱磷酸”接头完全置换磷酸酯部分;天然存在的碱基的修饰或置换;以及核糖-磷酸酯骨架的置换或修饰。

由于核酸是亚单位的聚合物,因此许多修饰出现在核酸内重复的一个位置处,例如一种碱基或一种磷酸酯部分或一种磷酸酯部分的一个非连接O的修饰。在一些情况下,该修饰将出现在该核酸中的所有标的位置处,但在许多情形下它不会这样。例如,一个修饰可以仅出现在3’或5’末端位置处,可以仅出现在一个末端区中,例如在一条链的一个末端核苷酸上或在最后2个、3个、4个、5个或10个核苷酸中的一个位置处。修饰可以出现在双链区、单链区或两者中。修饰可以仅出现在RNA的双链区中或可以仅出现在RNA的单链区中。例如,一个非连接O位置处的一个硫代磷酸酯修饰可以仅存在于一个或两个末端处,可以仅存在于一个末端区中,例如在一条链的一个末端核苷酸上或最后2个、3个、4个、5个或10个核苷酸中的一个位置处,或可以存在于双链和单链区中,特别是在末端处。一个或多个5’端可以被磷酸化。

为了增强稳定性,可能的是例如在突出端中包括特定碱基或在单链突出端中(例如,在一个5’或3’突出端或两者中)包括被修饰的核苷酸或核苷酸替代物。例如,可以希望在突出端中包括嘌呤核苷酸。在一些实施例中,一个3’或5’突出端中的全部或一些碱基可以用例如在此描述的修饰进行修饰。修饰可以包括例如使用核糖的2’位置处的修饰与本领域中已知的修饰,例如使用2’-脱氧-2’-氟代(2’-F)或2’-O-甲基修饰的脱氧核糖核苷酸代替核碱基的核糖,以及磷酸酯基中的修饰,例如硫代磷酸酯修饰。突出端不必与靶序列同源。

在一个实施例中,有义链和反义链的每个残基独立地用LNA、CRN、cET、UNA、HNA、CeNA、2’-甲氧基乙基、2’-O-甲基、2’-O-烯丙基、2’-C-烯丙基、2’-脱氧、2’-羟基或2’-氟代修饰。这些链可以含有多于一个修饰。在一个实施例中,有义链和反义链的每个残基独立地被2’-O-甲基或2’-氟代修饰。

至少两个不同修饰典型地存在于有义链和反义链上。那两个修饰可以是2’-O-甲基或2’-氟代修饰或其他修饰。

在一个实施例中,N

交替基序中所包含的修饰的类型可以是相同或不同的。例如,如果A、B、C、D各自表示核苷酸上的一种修饰类型,则交替模式(即每隔一个核苷酸上的修饰)可以是相同的,但有义链或反义链中的每一个可以是选自交替基序如“ABABAB...”、“ACACAC...”、“BDBDBD...”或“CDCDCD...”等内的若干修饰可能。

在一个实施例中,本发明的RNAi试剂包含:用于有义链上的交替基序的修饰模式相对于用于反义链上的交替基序的修饰模式移位。该移位可以是如此以使得有义链的修饰的核苷酸组对应于反义链的被不同地修饰的核苷酸组,并且反之亦然。例如,当有义链与dsRNA双链体中的反义链配对时,有义链中的交替基序可以从该链的5’-3’起由“ABABAB”开始,并且反义链中的交替基序可以在双链体区内从该链的5’-3’起由“BABABA”开始。作为另一个实例,有义链中的交替基序可以从该链的5’-3’起由“AABBAABB”开始,并且反义链中的交替基序可以在双链体区内从该链的5’-3’起由“BBAABBAA”开始,以使得在该有义链与该反义链之间存在修饰模式的完全或部分移位。

在一个实施例中,该RNAi试剂包含起初在有义链上具有2’-O-甲基修饰和2’-F修饰的交替基序模式,该模式相对于起初在反义链上具有2’-O-甲基修饰和2’-F修饰的交替基序模式具有移位,即有义链上的2’-O-甲基修饰的核苷酸与反义链上的2’-F修饰的核苷酸碱基配对,并且反之亦然。该有义链的1位置可以由2’-F修饰开始,并且该反义链的1位置可以由2’-O-甲基修饰开始。

将在三个连续核苷酸上具有三个相同修饰的一个或多个基序引入到有义链和/或反义链中断了存在于该有义链和/或反义链中的初始修饰模式。通过将在三个连续核苷酸上具有三个相同修饰的一个或多个基序引入到有义链和/或反义链而使该有义链和/或反义链的修饰模式的这一中断出人意料地增强了对靶基因的基因沉默活性。

在一个实施例中,当将在三个连续核苷酸上具有三个相同修饰的基序引入到这些链中的任一个时,紧挨着该基序的核苷酸的修饰是与该基序的修饰不同的修饰。例如,包含该基序的序列的一部分是“……N

该RNAi试剂可以进一步包含至少一个硫代磷酸酯或甲基膦酸酯核苷酸间键联。该硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰可以存在于有义链或反义链或这两条链的该链的任何位置中的任何核苷酸上。例如,该核苷酸间键联修饰可以存在于该有义链和/或该反义链上的每个核苷酸上;每个核苷酸间键联修饰可以以交替模式存在于该有义链和/或该反义链上;或者该有义链或反义链可以含有交替模式的两个核苷酸间键联修饰。该有义链上的核苷酸间键联修饰的交替模式可以与该反义链相同或不同,并且该有义链上的核苷酸间键联修饰的交替模式可以相对于该反义链上的核苷酸间键联修饰的交替模式具有移位。在一个实施例中,双链RNAi试剂包含6-8个硫代磷酸酯核苷酸间键联。在一个实施例中,该反义链包含5’-末端处的两个硫代磷酸酯核苷酸间键联和3’-末端处的两个硫代磷酸酯核苷酸间键联,并且该有义链在或者5’-末端或者3’-末端处包含至少两个硫代磷酸酯核苷酸间键联。

在一个实施例中,该RNAi在突出端区中包含硫代磷酸酯或甲基膦酸酯核苷酸间键联修饰。例如,该突出端区可以含有两个在这两个核苷酸之间具有硫代磷酸酯或甲基膦酸酯核苷酸间键联的核苷酸。还可以进行核苷酸间键联修饰以使突出端核苷酸与双链体区内的末端配对的核苷酸连接。例如,至少2个、3个、4个或所有的突出端核苷酸可以通过硫代磷酸酯或甲基膦酸酯核苷酸间键联来连接,并且任选地,可以存在将突出端核苷酸与紧挨着该突出端核苷酸的一个配对的核苷酸连接的另外的硫代磷酸酯或甲基膦酸酯核苷酸间键联。例如,在末端三个核苷酸之间可以存在至少两个硫代磷酸酯核苷酸间键联,其中这三个核苷酸中的两个是突出端核苷酸,并且第三个是紧挨着该突出端核苷酸的配对的核苷酸。这些末端三个核苷酸可以在该反义链的3’-端处、该有义链的3’-端处、该反义链的5’-端处和/或该反义链的5’端处。

在一个实施例中,该2个核苷酸的突出端是在该反义链的3’-端处,并且在末端的三个核苷酸之间存在两个硫代磷酸酯核苷酸间键联,其中这三个核苷酸中的两个是突出端核苷酸,并且第三个核苷酸是紧挨着该突出端核苷酸的配对的核苷酸。任选地,该RNAi试剂在该有义链的5’端和在该反义链的5’端处都可以另外具有在末端三个核苷酸之间的两个硫代磷酸酯核苷酸间键合。

在一个实施例中,该RNAi试剂在双链体内包含与靶标的一个或多个错配、或其组合。该错配可以出现在突出端区或双链体区中。碱基对可以基于其促进解离或熔融的倾向来分等级(例如对于一个具体配对的缔合或解离自由能,最简单的方法是基于个别对检查这些对,但也可以使用紧接着的相邻物或类似分析)。就促进解离而言:A:U优选于G:C;G:U优选于G:C;并且I:C优选于G:C(I=肌苷)。错配例如非规范的配对或除了规范以外的配对(如在此其他地方所描述)优选于规范的(A:T、A:U、G:C)配对;并且包括通用碱基的配对优选于规范的配对。

在一个实施例中,该RNAi试剂包含从反义链的5’-端起在双链体区内的前1、2、3、4或5个碱基对中的至少一个,这些碱基对独立地选自下组,该组具有A:U、G:U、I:C和错配的对,例如非规范的配对或除了规范以外的配对,或包括通用碱基的配对,以便促进在双链体的5’-端处解离反义链。

在一个实施例中,该双链体区内从该反义链中的5’端起的1位置处的核苷酸选自下组,该组由以下各项组成:A、dA、dU、U以及dT。可替代地,从该反义链的5’端起在该双链体区内的前1、2或3个碱基对中的至少一个是AU碱基对。例如,从该反义链的5’-端起在该双链体区内的第一个碱基对是AU碱基对。

在另一个实施例中,在该有义链的3’-端处的核苷酸是脱氧-胸腺嘧啶(dT)。在另一个实施例中,在该反义链的3’-端处的核苷酸是脱氧-胸腺嘧啶(dT)。在一个实施例中,在有义链和/或反义链的3’-端上存在脱氧-胸腺嘧啶核苷酸的短序列,例如两个dT核苷酸。

在一个实施例中,有义链序列可以由化学式(I)表示:

5’n

其中:

i和j各自独立地是0或1;

p和q各自独立地是0-6;

各N

各N

各n

其中Nb和Y不具有相同修饰;并且

XXX、YYY和ZZZ各自独立地表示在三个连续核苷酸上具有三个相同修饰的一个基序。优选地YYY全是2’-F修饰的核苷酸。

在一个实施例中,N

在一个实施例中,该YYY基序出现在该有义链的切割位点处或附近。例如,当该RNAi试剂具有长度是17-23个核苷酸的一个双链体区时,该YYY基序可以出现在有义链的切割位点处或附近(例如:可以出现在位置6、7、8、7、8、9、8、9、10、9、10、11、10、11、12或11、12、13处),计数从5’-端起从第一个核苷酸开始;或任选地,计数从5’-端起在该双链体区内的第一个配对的核苷酸处开始。

在一个实施例中,i是1且j是0,或i是0且j是1,或i和j两者都是1。该有义链因此可以由以下化学式表示:

5’n

5’n

5’n

当该有义链由化学式(Ib)表示时,N

当该有义链表示为化学式(Ic)时,N

当该有义链表示为化学式(Id)时,各N

X、Y和Z各自可以是彼此相同或不同的。

在其他实施例中,i是0并且j是0,并且该有义链可以由下化学式表示:

5’n

当该有义链由化学式(Ia)表示时,每个N

在一个实施例中,该RNAi的反义链序列可以由化学式(II)表示:

5’n

其中:

k和l各自独立地是0或1;

p’和q’各自独立地是0-6;

各N

各N

各n

其中N

X’X’X’、Y’Y’Y’以及Z’Z’Z’各自独立地表示在三个连续核苷酸上具有三个相同修饰的一个基序。

在一个实施例中,N

Y’Y’Y’基序出现在该反义链的切割位点处或其附近。例如,当该RNAi试剂具有长度是17-23个核苷酸的双链体区时,该Y’Y’Y’基序可以出现在有义链的位置9、位置10、位置11;位置10、位置11、位置12;位置11、位置12、位置13;位置12、位置13、位置14;或位置13、位置14、位置15处,计数从5’-端起从第一个核苷酸开始;或任选地,计数从5’-端起在该双链体区内的第一个配对的核苷酸处开始。优选地,该Y’Y’Y’基序出现在位置11、12、13处。

在一个实施例中,Y’Y’Y’基序全是2’-OMe修饰的核苷酸。

在一个实施例中,k是1且l是0,或k是0且l是1,或k和l两者都是1。

该反义链因此可以由以下化学式表示:

5’n

5’n

5’n

当该反义链由化学式(IIb)表示时,N

当该反义链表示为化学式(IIc)时,N

当该反义链表示为化学式(IId)时,各N

在其他实施例中,k是0且l是0,并且该反义链可以由下化学式表示:

5’n

当该反义链表示为化学式(IIa)时,各N

X’、Y’和Z’各自可以是彼此相同的或不同的。

该有义链和反义链的每个核苷酸可以独立地由以下各项修饰:LNA、CRN、UNA、cEt、HNA、CeNA、2’-甲氧基乙基、2’-O-甲基、2’-O-烯丙基、2’-C-烯丙基、2’-羟基、或2’-氟代。例如,该有义链和反义链的每个核苷酸独立地由2’-O-甲基或2’-氟代修饰。具体地说,各X、Y、Z、X’、Y’以及Z’可以表示2’-O-甲基修饰或2’-氟代修饰。

在一个实施例中,该RNAi试剂的有义链可以含有YYY基序,当双链体区是21个核苷酸时,该YYY基序出现在该链的9、10和11位置处,计数从5’-端起从第一个核苷酸开始,或任选地,计数从5’-端起在该双链体区内的第一个配对的核苷酸处开始;并且Y表示2’-F修饰。该有义链可以另外包含在双链体区的相反端作为翼修饰的XXX基序或ZZZ基序;并且XXX和ZZZ各自独立地表示2’-OMe修饰或2’-F修饰。

在一个实施例中,该反义链可以含有出现在该链的位置11、12和13处的Y’Y’Y’基序,计数从5’-端起从第一个核苷酸开始,或任选地,计数从5’-端起在该双链体区内的第一个配对的核苷酸处开始;并且Y’表示2’-O-甲基修饰。该有义链可以另外含有在双链体区的相反端作为翼修饰的X’X’X’基序或Z’Z’Z’基序;并且X’X’X’和Z’Z’Z’各自独立地表示2’-OMe修饰或2’-F修饰。

由以上化学式(Ia)、(Ib)、(Ic)、和(Id)中任一项表示的有义链分别与由化学式(IIa)、(IIb)、(IIc)、和(IId)中任一项表示的反义链形成了一个双链体。

因此,用于在本发明的方法中使用的RNAi试剂可以包括一个有义链和一个反义链,每条链具有14至30个核苷酸,该RNAi双链体由化学式(III)表示:

有义链:5’n

反义链:3’n

(III)

其中:

i、j、k、以及l各自独立地是0或1;

p、p’、q以及q’各自独立地是0-6;

各N

各N

其中各n

XXX、YYY、ZZZ、X’X’X’、Y’Y’Y’、以及Z’Z’Z’各自独立地表示三个连续核苷酸上具有三个相同修饰的一个基序。

在一个实施例中,i是0并且j是0;或i是1并且j是0;或i是0并且j是1;或i和j两者均是0;或i和j两者均是1。在另一个实施例中,k是0并且l是0;或k是1并且l是0;k是0并且l是1;或k和l两者均是0;或k和l两者均是1。

形成RNAi双链体的该有义链和反义链的示例性组合包括下化学式:

5’n

3’n

(IIIa)

5’n

3’n

(IIIb)

5’n

3’n

(IIIc)

5’n

3’n

(IIId)

当该RNAi试剂由化学式(IIIa)表示时,各N

当该RNAi试剂由化学式(IIIb)表示时,各N

当该RNAi试剂表示为化学式(IIIc)时,各N

当该RNAi试剂表示为化学式(IIId)时,各N

化学式(III)、(IIIa)、(IIIb)、(IIIc)和(IIId)中的X、Y和Z各自可以是彼此相同或不同的。

当该RNAi试剂由化学式(III)、(IIIa)、(IIIb)、(IIIc)以及(IIId)表示时,这些Y核苷酸中的至少一个可以与这些Y’核苷酸中的一个形成碱基对。可替代地,这些Y核苷酸中的至少两个与相应的Y’核苷酸形成碱基对;或这些Y核苷酸中的全部三个都与相应的Y’核苷酸形成碱基对。

当该RNAi试剂由化学式(IIIb)或(IIId)表示时,这些Z核苷酸中的至少一个可以与这些Z’核苷酸中的一个形成碱基对。可替代地,这些Z核苷酸中的至少两个与相应的Z’核苷酸形成碱基对;或这些Z核苷酸中的全部三个都与相应的Z’核苷酸形成碱基对。

当该RNAi试剂表示为化学式(IIIc)或(IIId)时,这些X核苷酸中的至少一个可以与这些X’核苷酸中的一个形成碱基对。可替代地,这些X核苷酸中的至少两个与相应的X’核苷酸形成碱基对;或这些X核苷酸中的全部三个都与相应的X’核苷酸形成碱基对。

在一个实施例中,Y核苷酸上的修饰不同于Y’核苷酸上的修饰,Z核苷酸上的修饰不同于Z’核苷酸上的修饰,和/或X核苷酸上的修饰不同于X’核苷酸上的修饰。

在一个实施例中,当该RNAi试剂由化学式(IIId)表示时,N

在另一个实施例中,当该RNAi试剂由化学式(IIIa)表示时,N

在一个实施例中,该RNAi试剂是一种多聚体,该多聚体含有至少两个由化学式(III)、(IIIa)、(IIIb)、(IIIc)和(IIId)表示的双链体,其中这些双链体通过一种接头来连接。该接头可以是可切割的或不可切割的。任选地,该多聚体进一步包含一个配体。这些双链体中的每个可以靶向相同基因或两个不同基因;或这些双链体中的每个可以靶向两个不同靶位点处的相同基因。

在一个实施例中,该RNAi试剂是一种多聚体,该多聚体含有由化学式(III)、(IIIa)、(IIIb)、(IIIc)和(IIId)表示的三个、四个、五个、六个或更多个双链体。该接头可以是可切割的或不可切割的。任选地,该多聚体进一步包含一个配体。这些双链体中的每个可以靶向相同基因或两个不同基因;或这些双链体中的每个可以靶向两个不同靶位点处的相同基因。

在一个实施例中,由化学式(III)、(IIIa)、(IIIb)、(IIIc)和(IIId)表示的两种RNAi试剂在5’端和这些3’端中的一个或两个处彼此连接,并且任选地共轭到一个配体上。这些试剂中的每个可以靶向相同基因或两个不同基因;或这些试剂中的每个可以靶向两个不同靶位点处的相同基因。

在某些实施例中,本发明的RNAi试剂可含有少量含有2’-氟代修饰的核苷酸,例如具有2’-氟代修饰的10个或更少的核苷酸。例如,该RNAi试剂可含有具有2’-氟代修饰的10、9、8、7、6、5、4、3、2、1或0个核苷酸。在一个具体的实施例中,本发明的RNAi试剂含有10个具有2’-氟代修饰的核苷酸,例如在正义链中含有2-氟代修饰的4个核苷酸,和在反义链中含有2’-氟代修饰的6个核苷酸。在另一个具体的实施例中,本发明的RNAi试剂含有6个具有2’-氟代修饰的核苷酸,例如在正义链中含有2-氟代修饰的4个核苷酸,和在反义链中含有2’-氟代修饰的2个核苷酸。

在其他实施例中,本发明的RNAi试剂可含有超低数目的含有2’-氟代修饰的核苷酸,例如含有2’-氟代修饰的2个或更少的核苷酸。例如,该RNAi试剂可以含有2个、1个、0个具有2’-氟代修饰的核苷酸。在一个具体的实施例中,该RNAi试剂可以含有2个具有2’-氟代修饰的核苷酸,例如在正义链中含有2-氟代修饰的0个核苷酸,和在反义链中含有2’-氟代修饰的2个核苷酸。

不同公开物描述了可以在本发明的这些方法中使用的多聚体RNAi试剂。此类公开物包括WO2007/091269、美国专利号7858769、WO2010/141511、WO2007/117686、WO2009/014887以及WO2011/031520,所述公开物的每一个的全部内容特此通过引用结合在此。

如下更详细地描述,含有一个或多个碳水化合物部分与RNAi试剂的共轭的RNAi试剂可以优化该RNAi试剂的一种或多种特性。在许多情况下,该碳水化合物部分将被附接到该RNAi试剂的一个修饰的亚单元上。例如,一种dsRNA试剂的一个或多个核糖核苷酸亚单元的核糖可以被另一个部分(例如,一个碳水化合物配体所附接的一个非碳水化合物(优选环状)载体)置换。其中亚单位的核糖已经如此被置换的核糖核苷酸亚单位在此被称为核糖置换修饰亚单位(RRMS)。一种环状载体可以是一个碳环系统,即所有环原子均是碳原子,或一个杂环系统,即一个或多个环原子可以是一个杂原子,例如氮、氧、硫。该环状载体可以是一个单环系统,或可以含有两个或更多个环,例如稠合环。该环状载体可以是一个完全饱和的环系统,或它可以含有一个或多个双键。

该配体可以通过一个载体附接到多核苷酸上。这些载体包括(i)至少一个“骨架附接点”、优选两个“骨架附接点”,和(ii)至少一个“系拴附接点”。如在此使用的“骨架附接点”是指一个官能团(例如一个羟基基团),或通常,可供用于并且适用于将该载体结合到一种核糖核酸的骨架(例如含硫骨架)中的一个键(例如磷酸酯或修饰的磷酸酯)。在一些实施例中,“系栓附接点”(TAP)是指该环状载体的、连接一个选择的部分的一个组成环原子,例如一个碳原子或一个杂原子(相异于提供骨架附接点的原子)。该部分可以是例如一种碳水化合物,例如单糖、二糖、三糖、四糖、寡糖以及多糖。任选地,该选择的部分通过一个介入系拴物连接到该环状载体上。因此,该环状载体将经常包括一个官能团(例如氨基基团),或通常提供适用于将另一个化学实体(例如一个配体)结合或系拴到组成型环上的一个键。

这些RNAi试剂可以经由一个载体共轭到一个配体上,其中该载体可以是环状基团或非环状基团;优选地,环状基团选自吡咯烷基、吡唑啉基、吡唑烷基、咪唑啉基、咪唑烷基、哌啶基、哌嗪基、[1,3]二氧戊环、噁唑烷基、异噁唑烷基、吗啉基、噻唑烷基、异噻唑烷基、喹喔啉基、哒嗪酮基、四氢呋喃基以及十氢萘;优选地,非环状基团选自丝氨醇骨架或二乙醇胺骨架。

在某些具体的实施例中,用于本发明的这些方法中的RNAi试剂是选自下组的一种试剂,该组具有在表4A、表4B、表5、表8、表9、表10、表11A、表11B、表12以及表13中的任一个中列出的试剂。这些试剂可以进一步包含一个配体。

IV.共轭至配休的iRNA

本发明的iRNA的RNA的另一种修饰涉及使RNA化学连接到一种或多种增强iRNA的活性、细胞分布或细胞摄取的配体、部分或共轭物上。这类部分包括但不限于脂质部分,如胆固醇部分(莱兹斯英格(Letsinger)等人,美国科学院院报(Proc.Natl Acid.Sci.USA),1989,86:6553-6556)、胆酸(曼汉兰(Manoharan)等人,生物有机化学与医药化学通讯(Biorg.Med.Chem.Let.),1994,4:1053-1060)、硫醚,例如己基-S-三苯甲基硫醇(曼汉兰等人,纽约科学院年报(Ann.N Y.Acad.Sci.),1992,660:306-309;曼汉兰等人,生物有机化学与医药化学通讯,1993,3:2765-2770)、硫代胆固醇(奥伯豪泽尔(Oberhauser)等人,核酸研究(Nucl Acids Res.),1992,20:533-538)、脂肪族链,例如十二烷二醇或十一烷基残基(赛松-贝莫若斯(Saison-Behmoaras)等人,欧洲分子生物学学会杂志(EMBO J),1991,10:1111-1118;卡巴诺夫(Kabanov)等人,欧洲生化学会联合会快报(FEBS Lett.),1990,259:327-330;斯威那查克(Svinarchuk)等人,生化与分子生物学(Biochimie),1993,75:49-54)、磷脂,例如二-十六烷基-外消旋-甘油或三乙基铵1,2-二-O-十六烷基-外消旋-甘油-3-磷酸酯(曼汉兰等人,四面体快报(Tetrahedron Lett.),1995,36:3651-3654;谢伊(Shea)等人,核酸研究,1990,18:3777-3783)、聚胺或聚乙二醇链(曼汉兰等人,核苷与核苷酸(Nucleosides&Nucleotides),1995,14:969-973)、或金刚烷乙酸(曼汉兰等人,四面体快报,1995,36:3651-3654)、棕榈基部分(米什拉(Mishra)等人,生物化学与生物物理学报(Biochim.Biophys.Acta),1995,1264:229-237)、或十八胺或己基氨基-羰基氧基胆固醇部分(克鲁克(Crooke)等人,美国药理学与实验治疗学杂志(J.Pharmacol.Exp.Ther.),1996,277:923-937)。

在一个实施例中,配体改变向其中并入该配体的iRNA试剂的分布、靶向或寿命。在优选实施例中,与例如不存在这样一个配体的物种相比,这种配体为选择的靶标(例如分子、细胞或细胞类型、区室(例如细胞或器官区室、组织、器官或身体的区域))提供增强的亲和力。优选的配体将不参与双链体核酸中的双链体配对。

配体可以包括天然存在的物质,如蛋白质(例如,人血清白蛋白(HSA)、低密度脂蛋白(LDL)或球蛋白);碳水化合物(例如,葡聚糖、支链淀粉、甲壳质、壳聚糖、菊糖、环糊精、N-乙酰半乳糖胺或透明质酸);或脂质。配体还可以是重组或合成的分子,如合成聚合物,例如合成的聚氨基酸。聚氨基酸的实例包括以下聚氨基酸:聚赖氨酸(PLL)、聚L-天冬氨酸、聚L-谷氨酸、苯乙烯酸-马来酸酐共聚物、聚(L-丙交酯-共-乙交酯)共聚物、二乙烯基醚-马来酐共聚物、N-(2-羟丙基)甲基丙烯酰胺共聚物(HMPA)、聚乙二醇(PEG)、聚乙烯醇(PVA)、聚氨酯、聚(2-乙基丙烯酸)、N-异丙基丙烯酰胺聚合物或聚磷嗪。聚胺的实例包括:聚乙烯亚胺、聚赖氨酸(PLL)、精胺、亚精胺、聚胺、假肽-聚胺、肽模拟聚胺、树枝状聚合物聚胺、精氨酸、脒、鱼精蛋白、阳离子脂质、阳离子卟啉、聚胺的季盐、或α螺旋肽。

配体还可以包括靶向基团,例如与指定的细胞类型如肾细胞结合的细胞或组织靶向剂,例如凝集素、糖蛋白、脂质或蛋白质,例如抗体。靶向基团可以是促甲状腺激素、促黑素、凝集素、糖蛋白、表面活性蛋白A、粘蛋白碳水化合物、多价乳糖、多价半乳糖、N-乙酰基-半乳糖胺、N-乙酰基-葡糖胺多价甘露糖、多价岩藻糖、糖基化聚氨基酸、多价半乳糖、转铁蛋白、双膦酸盐、聚谷氨酸、聚天冬氨酸、脂质、胆固醇、类固醇、胆酸、叶酸、维生素B12、维生素A、生物素、或RGD肽或RGD肽模拟物。

配体的其他实例包括染料、嵌入剂(例如吖啶)、交联剂(例如补骨脂素、丝裂霉素C)、卟啉(TPPC4、德克萨斯卟啉(texaphyrin)、噻啉(Sapphyrin))、多环芳烃(例如吩嗪、二氢吩嗪)、人工核酸内切酶(例如EDTA)、亲脂性分子,例如胆固醇、胆酸、金刚烷乙酸、1-芘丁酸、二氢睾酮、1,3-双-O(十六烷基)甘油、香叶基氧己基、鲸蜡基甘油、冰片、薄荷醇、1,3-丙二醇、十七烷基、棕榈酸、肉豆蔻酸、O3-(油酰)石胆酸、O3-(油酰)胆烯酸、二甲氧基三苯甲基、或吩噁嗪肽共轭物(例如触角足肽、Tat肽)、烷基化剂、磷酸酯、氨基、巯基、PEG(例如PEG-40K)、MPEG、[MPEG]

配体可以是蛋白质,例如糖蛋白,或肽,例如对辅助配体具有特异亲和力的分子,或抗体,例如与指定细胞类型如肝细胞结合的抗体。配体还可以包括激素和激素受体。它们也可以包括非肽种类,如脂质、凝集素、糖类、维生素、辅因子、多价乳糖、多价半乳糖、N-乙酰基-半乳糖胺、N-乙酰基-葡糖胺多价甘露糖或多价岩藻糖。该配体可以是例如脂多糖,p38 MAP激酶的活化剂或NF-κB的活化剂。

该配体可以是可以例如通过破坏细胞的细胞骨架(例如通过破坏细胞微管、微丝和/或中间丝)增加iRNA试剂摄入到细胞中的物质,例如药物。药物可以例如是泰素(taxon)、长春新碱、长春碱、松胞菌素、诺考达唑、促微丝聚合剂(japlakinolide)、红海海绵素A、鬼笔环肽、海洋苔藓素(swinholide)A、茚满诺星(indanocine)或myoservin。

在一些实施例中,附接到如在此所描述的iRNA上的一个配体用作药物代谢动力学调节剂(PK调节剂)。PK调节剂包括亲油物质、胆酸、类固醇、磷脂类似物、肽、蛋白质结合剂、PEG、维生素等。示例性PK调节剂包括,但不限于胆固醇、脂肪酸、胆酸、石胆酸、二烷基甘油酯、二酰甘油酯、磷脂、鞘脂、萘普生、布洛芬(ibuprofen)、维生素E、生物素等。包含许多硫代磷酸酯键联的寡核苷酸也已知与血清蛋白结合,因此骨架中包含多个硫代磷酸酯键联的短寡核苷酸,例如具有约5个碱基、10个碱基、15个碱基或20个碱基的寡核苷酸,也服从于本发明作为配体(例如作为PK调节配体)。此外,结合血清组分(例如血清蛋白)的适配体也适合用作在此所述的这些实施例中的PK调节配体。

本发明的配体-共轭的寡核苷酸可以通过使用这样一种寡核苷酸来合成,该寡核苷酸具有下垂的反应功能性,例如来源于该寡核苷酸上的连接分子的附接(如下所述)。该反应性寡核苷酸可以直接与可商购的配体,合成的、具有多种保护基中的任一种的配体,或具有连接部分附接于其上的配体发生反应。

在本发明的共轭物中使用的寡核苷酸可以方便且常规地通过固相合成的熟知技术来制备。用于这类合成的设备由多个供应商(包括例如应用生物系统公司(AppliedBiosystems)(福斯特市,加利福尼亚州))销售。可另外地或替代地使用本领域中已知的用于这类合成的任何其他装置。使用相似的技术来制备其他寡核苷酸(如硫代磷酸酯和烷基化衍生物)也是已知的。

在本发明的配体-共轭的寡核苷酸以及具有序列特异性连接的核苷的配体-分子中,该寡核苷酸以及寡核苷可以利用标准核苷酸或核苷前体,或已经具有连接部分的核苷酸或核苷共轭物前体,已经具有配体分子的配体-核苷酸或核苷共轭物前体,或带有结构基元的非核苷配体,在适合的DNA合成仪上进行组装。

当使用已经具有连接部分的核苷酸-共轭物前体时,典型地完成该序列特异性连接的核苷的合成,并且然后该配体分子与该连接部分反应以形成配体共轭的寡核苷酸。在一些实施例中,本发明的寡核苷酸或连接的核苷通过一种自动合成仪合成,除了可商购以及寡核苷酸合成中常规使用的标准亚磷酰胺以及非标准亚磷酰胺之外,该合成还使用衍生自配体-核苷共轭物的亚磷酰胺。

A.脂质共轭物

在一个实施例中,该配体或共轭物是一种脂质或基于脂质的分子。这种脂质或基于脂质的分子优选地结合血清蛋白,例如人血清白蛋白(HSA)。结合HSA的配体允许共轭物分布至一个靶组织,例如身体的非肾靶组织。例如,该靶组织可以是肝脏,包括肝脏的实质细胞。可以结合HSA的其他分子也可以用作配体。例如可以使用萘普生或阿司匹林。脂质或基于脂质的配体可以(a)增加共轭物对降解的抗性,(b)增加靶向或运输到靶细胞或细胞膜中,和/或(c)可以用来调节与血清蛋白(例如HSA)的结合。

基于脂质的配体可以用来抑制(例如控制)共轭物与靶组织的结合。例如,与HSA更强烈结合的脂质或基于脂质的配体将更不可能靶向肾并且因此较不可能从身体清除。与HSA较不强烈结合的脂质或基于脂质的配体可以用来使共轭物靶向肾。

在一个优选实施例中,基于脂质的配体结合HSA。优选地,它以足够的亲和力结合HSA,以使得该共轭物将优选地分布至非肾组织。然而,优选的是这种亲和力并不是这样强,以使得HSA-配体结合不能逆转。

在另一个优选实施例中,基于脂质的配体微弱或根本不结合HSA,这样使得共轭物将优选地分布至肾。作为基于脂质的配体的替代或除它之外,还可以使用靶向肾细胞的其他部分。

另一方面,该配体是由靶细胞(例如正在增殖的细胞)摄取的部分,例如维生素。这些特别有用于治疗特征在于不想要的细胞增殖(例如具有恶性或非恶性类型,例如癌细胞)的障碍。示例性维生素包括维生素A、E和K。其他示例性维生素包括是B维生素,例如叶酸、B12、核黄素、生物素、吡哆醛或其他维生素或由靶细胞如肝细胞摄取的养分。还包括HSA和低密度脂蛋白(LDL)。

B.细胞渗透剂

另一方面,该配体是细胞渗透剂,优选地是螺旋细胞渗透剂。优选地,该试剂是两亲的。一种示例性试剂是肽如tat或触角足蛋白。如果该试剂是肽,则它可以被修饰,包括肽酰基模拟物、反转异构体、非肽键联或假肽键联和D-氨基酸的使用。该螺旋剂优选地是一种α-螺旋剂,该α-螺旋剂优选具有一个亲脂性相和一个疏脂性相。

该配体可以是肽或肽模拟物。肽模拟物(在本文中也称作寡肽模拟物)是能够折叠成与天然肽相似的限定三维结构的分子。肽和肽模拟物与iRNA剂的附接可以影响iRNA的药物代谢动力学分布,如通过增强细胞鉴别与吸收。肽或肽模拟物部分可以是约5-50氨基酸长的,例如约5、10、15、20、25、30、35、40、45或50个氨基酸长。

肽或肽模拟物可以例如是细胞渗透肽、阳离子肽、两亲肽或疏水肽(例如主要由Tyr、Trp或Phe组成)。肽部分可以是树状肽、约束肽或交联肽。在另一个替代中,该肽部分可以包含疏水性膜转位序列(MTS)。一种包含疏水性MTS的示例性肽是具有氨基酸序列AAVALLPAVLLALLAP(SEQ ID NO:24)的RFGF。含有疏水性MTS的RFGF类似物(例如,氨基酸序列AALLPVLLAAP(SEQ ID NO:25))也可以是靶向部分。该肽部分可以是一个“递送”肽,该递送肽可以携带大的极性分子,包括肽、寡核苷酸和跨细胞膜的蛋白。例如,已经发现来自HIVTat蛋白的序列(GRKKRRQRRRPPQ(SEQ ID NO:26))和果蝇触角足蛋白的序列(RQIKIWFQNRRMKWKK(SEQ ID NO:27))能够作为递送肽发挥作用。肽或肽模拟物可以通过DNA的随机序列来编码,如从噬菌体展示文库或一珠一化合物(OBOC)组合文库中鉴定的肽(拉姆(Lam)等人,自然,354:82-84,1991)。通过为了细胞靶向的目的结合的单体单元栓系至dsRNA试剂的肽或肽模拟物的实例是精氨酸-甘氨酸-天冬氨酸(RGD)-肽或RGD模拟物。肽部分的长度可以在从约5个氨基酸至约40个氨基酸的范围内。这些肽部分可以具有结构修饰,如以便增加稳定性或引导构象特性。可以利用以下描述的任何结构修饰。

用于本发明的这些组合物和方法中的RGD肽可以是线性或环状的,并且可以被修饰,例如糖基化或甲基化以促进靶向一个或多个特定组织。含RGD的肽和肽模拟物可以包括D-氨基酸以及合成的RGD模拟物。除了RGD以外,可以使用靶向整合素配体的其他部分。该配体的优选共轭物靶向PECAM-1或VEGF。

“细胞渗透肽”能够渗透细胞例如微生物细胞(如细菌或真菌细胞)或哺乳动物细胞(如人细胞)。微生物细胞渗透肽可以是,例如,α-螺旋形线性肽(例如,LL-37或CeropinP1),含有二硫键的肽(例如,α-防御素、β-防御素或牛抗菌肽),或仅含一个或两个支配性氨基酸的肽(例如,PR-39或吲哚力西丁(indolicidin))。细胞渗透肽还可以包括核定位信号(NLS)。例如,细胞渗透肽可以是二重的两亲性肽,如MPG,该肽来源于HIV-1gp41的融合肽结构域和SV40大T抗原的NLS(斯米尼(Simeoni)等人,核酸研究,31:2717-2724,2003)。

C.碳水化合物共轭物

在本发明的组合物与方法的一些实施例中,iRNA寡核苷酸进一步包括一种碳水化合物。碳水化合物共轭的iRNA对于核酸的体内递送以及适合于体内治疗用途的组合物而言是有利的,如在此所描述。如在此所使用,“碳水化合物”是指作为本身由具有至少6个碳原子(这些碳原子可以是线性、支链或环状的)与键合到每个碳原子上的氧、氮或硫原子的一个或多个单糖单元组成的碳水化合物的化合物;或具有由一个或多个单糖单元组成的碳水化合物部分的一部分的化合物,每个单糖具有至少六个碳原子(这些碳原子可以是线性、支链或环状的)与键合到每个碳原子上的氧、氮或硫原子。代表性的碳水化合物包括糖(单糖、二糖、三糖以及含有从约4、5、6、7、8或9个单糖单元的寡糖),以及多糖如淀粉、糖原、纤维素和多糖胶。具体的单糖包括AGT和以上(例如,AGT、C6、C7或C8)糖;二糖和三糖包括具有两个或三个单糖单元的糖(例如,AGT、C6、C7或C8)。

在一个实施例中,用于在本发明的这些组合物和方法中的碳水化合物共轭物是一种单糖。在一个实施例中,该单糖是一种N-乙酰半乳糖胺,如

在另一个实施例中,用于在本发明的这些组合物和方法中的碳水化合物共轭物是选自下组,该组由以下各项组成:

用于在于此描述的实施例中使用的另一个代表性碳水化合物共轭物包括但不限于,

(化学式XXIII),当X或Y其中一者是寡核苷酸时,另一者是氢。

在一些实施例中,该碳水化合物共轭物进一步包含如上所描述的一个或多个另外的配体,如但不限于PK调节剂和/或细胞渗透肽。

适合用于在本发明中使用的另外的碳水化合物共轭物包括在PCT公开号WO 2014/179620和WO 2014/179627中描述的那些,这些公开各自的全部内容通过引用结合在此。

D.连接子

在一些实施例中,在此描述的共轭物或配体可以借助不同连接子附接到iRNA寡核苷酸上,这些连接子可以是可裂解的或不可裂解的。

术语“连接子”或“连接基团”意指一种有机部分,该有机部分连接一种化合物的两个部分,例如共价地附接一个种化合物的两个部分。连接子典型地包括一种直接的键或一种原子例如氧或硫,一种单位例如NR8、C(O)、C(O)NH、SO、SO

可裂解的连接基团在细胞外是足够稳定的一种基团,但该基团在进入靶细胞时被裂解以释放该接头结合在一起的两个部分。在一个优选实施例中,该可裂解的连接基团在靶细胞中或在一种第一参考条件(该第一参考条件可以例如被选择成模拟或代表细胞内条件)下的裂解比在受试者的血液中或在一种第二参考条件下(该第二参考条件可以例如被选择成模拟或代表在该血液或血清中发现的条件)快至少约10倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍或更多,或至少约100倍。

可裂解的连接基团易于受到裂解因子(例如pH、氧化还原电位或降解分子的存在)的影响。通常,裂解因子在细胞内比在血清或血液中更普遍或以更高水平或活性被发现。此类降解剂的实例包括:被选择用于具体底物或不具有底物特异性的氧化还原剂,包括例如存在于细胞中,可以通过还原降解氧化还原可裂解的连接基团的氧化性或还原性酶或还原剂如硫醇;酯酶;可以产生酸性环境的核内体或试剂,例如产生5或更低的pH的那些;可以通过用作广义酸、肽酶(该肽酶可以是底物特异性的)和磷酸酶来水解或降解酸可裂解的连接基团的酶。

一种可裂解的键基团,如二硫键可以对pH敏感。人血清的pH是7.4,而平均的细胞内pH稍低,在约7.1-7.3范围内。核内体具有在5.5-6.0范围内的更酸性的pH,并且溶酶体具有在5.0左右的甚至更酸性的pH。一些接头将具有在优选的pH下切割的可切割的连接基团,从而使阳离子脂质从细胞内的配体中释放,或进入希望的细胞区室中。

接头可以包括可被一种具体的酶切割的可切割的连接基团。结合到接头中的可切割的连接基团的类型可以取决于有待靶向的细胞。例如靶向肝脏的配体可以通过包括酯基团的接头而被连接到阳离子脂质上。肝脏细胞富含酯酶,并且因此该接头将在肝脏细胞中比在不富含酯酶的细胞类型中更有效地切割。富含酯酶的其他细胞类型包括肺、肾皮质以及睾丸的细胞。

当靶向富含肽酶的细胞类型(如肝细胞和滑膜细胞)时,可以使用含有肽键的接头。

通常,一种候选的可切割的连接基团的适合性可以通过测试降解剂(或条件)切割该候选的连接基团的能力来进行评估。还希望的是也测试该候选的可切割的连接基团在血液中或当与其他非靶组织接触时抵抗切割的能力。因此,可以确定在一种第一条件与一种第二条件之间进行切割的相对敏感性,其中该第一条件被选择成指示在靶细胞中的切割并且该第二条件被选择成指示在其他组织或生物流体(例如血液或血清)中的切割。这些评估可以在无细胞系统中、在细胞中、在细胞培养物中、在器官或组织培养物中或在整个动物中进行。有用的是在无细胞或培养条件下进行初始评估并且通过在整个动物中的进一步评估来进行确证。在优选实施例中,有用的候选化合物在细胞中(或在选择成模拟细胞内条件的体外条件下)的切割比在血液或血清(或在被选择成模拟细胞外条件的体外条件下)中的切割快至少约2、4、10、20、30、40、50、60、70、80、90或约100倍。

i.氧化还原可切割连接基团

在一个实施例中,可切割的连接基团是一种氧化还原可切割的连接基团,其在还原或氧化时被切割。可还原切割的连接基团的一个实例是二硫化物连接基团(-S-S-)。为了确定一种候选的可切割连接基团是否是适合的“可还原切割的连接基团”,或例如是否适合于与一种特定iRNA部分和特定靶向剂一起使用,可以参考在此描述的方法。例如可以通过用二硫苏糖醇(DTT)或本领域中已知的其他使用还原剂的试剂进行孵育来对一种候选物进行评估,这模拟了会在细胞(例如靶细胞)中观察到的切割速率。还可以在被选择成模拟血液或血清条件的条件下对这些候选物进行评估。在一个实施例中,候选化合物在血液中被切割至多约10%。在其他实施例中,有用的候选化合物在细胞中(或在被选择成模拟细胞内条件的体外条件下)的降解比在血液(或在选择成模拟细胞外条件的体外条件下)中的降解快至少约2、4、10、20、30、40、50、60、70、80、90或约100倍。可以在被选择成模拟细胞内介质的条件下,使用标准的酶动力学测定来确定候选化合物的切割速率,并且将其与被选择成模拟细胞外介质的条件下的速率相比较。

ii.基于磷酸酯的可裂解连接基团

在另一个实施例中,可裂解连接子包括一种基于磷酸酯的可裂解的连接基团。基于磷酸酯的可裂解的连接基团通过降解或水解磷酸酯基团的试剂来裂解。在细胞中裂解磷酸酯基团的试剂的一个实例是酶,例如细胞中的磷酸酶。基于磷酸酯的连接基团的实例是-O-P(O)(ORk)-O-、-O-P(S)(ORk)-O-、-O-P(S)(SRk)-O-、-S-P(O)(ORk)-O-、-O-P(O)(ORk)-S-、-S-P(O)(ORk)-S-、-O-P(S)(ORk)-S-、-S-P(S)(ORk)-O-、-O-P(O)(Rk)-O-、-O-P(S)(Rk)-O-、-S-P(O)(Rk)-O-、-S-P(S)(Rk)-O-、-S-P(O)(Rk)-S-、-O-P(S)(Rk)-S-。优选的实施例是-O-P(O)(OH)-O-、-O-P(S)(OH)-O-、-O-P(S)(SH)-O-、-S-P(O)(OH)-O-、-O-P(O)(OH)-S-、-S-P(O)(OH)-S-、-O-P(S)(OH)-S-、-S-P(S)(OH)-O-、-O-P(O)(H)-O-、-O-P(S)(H)-O-、-S-P(O)(H)-O、-S-P(S)(H)-O-、-S-P(O)(H)-S-、-O-P(S)(H)-S-。一个优选实施例是-O-P(O)(OH)-O-。可以使用类似于以上描述的那些的方法来评估这些候选物。

iii.酸可切割连接基团

在另一个实施例中,可切割连接物包括一种酸可切割的连接基团。酸可切割的连接基团是在酸性条件下被切割的一种连接基团。在优选的实施例中,酸可切割的连接基团在一个具有大约6.5或更低(例如大约6.0、5.75、5.5、5.25、5.0或更低)的pH的酸性环境中被切割,或者被多种因子(例如可以作为一种广义酸起作用的酶)被切割。在细胞中,具体的低pH细胞器(例如核内体或溶酶体)可以提供一个针对酸可切割的连接基团的切割环境。酸可切割的连接基团的实例包括但不限于腙、酯以及氨基酸的酯。酸可切割的基团可以具有通式-C=NN-、C(O)O或-OC(O)。一个优选实施例是当附接到酯(烷氧基基团)的氧的碳是芳基基团、取代的烷基基团或叔烷基基团(如二甲基戊基或叔丁基)时。可以使用类似于以上描述的那些的方法来评估这些候选物。

iv.基于酯的连接基团

在另一个实施例中,可裂解的连接子包括一种基于酯的可裂解的连接基团。基于酯的可裂解的连接基团通过酶如细胞中的酯酶与酰胺酶来裂解。基于酯的可裂解的连接基团的实例包括但不限于亚烷基、亚烯基以及亚炔基基团的酯。酯可裂解的连接基团具有通式-C(O)O-、或-OC(O)-。可以使用类似于以上描述的那些的方法来评估这些候选物。

v.基于肽的裂解基团

在又另一个实施例中,可裂解的连接子包括一种基于肽的可裂解的连接基团。基于肽的可裂解的连接基团通过酶(例如细胞中的肽酶与蛋白酶)而被裂解。基于肽的可裂解的连接基团是在氨基酸之间形成以产生寡肽(例如二肽、三肽,等等)以及多肽的肽键。基于肽的可裂解的基团不包括酰胺基团(-C(O)NH-)。酰胺基团可以在任何亚烷基、亚烯基或亚炔基之间形成。肽键是在氨基酸之间形成以得到肽和蛋白质的特定类型的酰胺键。基于肽的裂解基团通常限于在氨基酸之间形成从而得到肽和蛋白质的肽键(即,酰胺键),并且不包括整个酰胺官能团。基于肽的可切割的连接基团具有通式-NHCHRAC(O)NHCHRBC(O)-,其中RA与RB是这两个邻接氨基酸的R基团。可以使用类似于以上描述的那些的方法来评估这些候选物。

在一个实施例中,本发明的iRNA通过一种接头被共轭到碳水化合物上。本发明的这些组合物和方法的具有接头的iRNA碳水化合物共轭物的非限制性实例包括但不限于,

当X或Y中的一个是寡核苷酸时,另一个是氢。

在本发明的组合物与方法的某些实施例中,配体是通过二价或三价分支连接子而附接的一个或多个GalNAc(N-乙酰半乳糖胺)衍生物。

在一个实施例中,本发明的dsRNA被共轭到选自下组的一种二价或三价分支连接子上,该组具有以任何化学式(XXXII)-(XXXV)示出的结构:

其中:

q2A、q2B、q3A、q3B、q4A、q4B、q5A、q5B以及q5C对于每次出现独立地表示0-20并且其中该重复单元可以是相同或不同的;

P

Q

R

L

其中L

合适的二价与三价分支接头基团共轭GalNAc衍生物的实例包括但不限于在以上引用为化学式II、VII、XI、X以及XIII的结构。

传授制备RNA共轭物的代表性美国专利包括但不限于:美国专利号4,828,979;4,948,882;5,218,105;5,525,465;5,541,313;5,545,730;5,552,538;5,578,717;5,580,731;5,591,584;5,109,124;5,118,802;5,138,045;5,414,077;5,486,603;5,512,439;5,578,718;5,608,046;4,587,044;4,605,735;4,667,025;4,762,779;4,789,737;4,824,941;4,835,263;4,876,335;4,904,582;4,958,013;5,082,830;5,112,963;5,214,136;5,082,830;5,112,963;5,214,136;5,245,022;5,254,469;5,258,506;5,262,536;5,272,250;5,292,873;5,317,098;5,371,241;5,391,723;5,416,203;5,451,463;5,510,475;5,512,667;5,514,785;5,565,552;5,567,810;5,574,142;5,585,481;5,587,371;5,595,726;5,597,696;5,599,923;5,599,928和5,688,941;6,294,664;6,320,017;6,576,752;6,783,931;6,900,297;7,037,646;8,106,022,前述专利的每个的全部内容特此通过引用结合在此。

给定化合物中的全部位置不必要经统一修饰,并且实际上可以在单个化合物中或甚至在iRNA内部的单个核苷处掺入多于一个前述修饰。本发明也包括作为嵌合化合物的iRNA化合物。

在本发明的上下文中,“嵌合体的”iRNA化合物或“嵌合体”是以下这样的iRNA化合物,优选是dsRNA,它们包含两个或更多个化学上不同的区域,每者由至少一个单体单元构成,即,在dsRNA化合物的情况下的一种核苷酸。这些iRNA典型地含有至少一个区域,其中该RNA被修饰以便赋予iRNA增加的核酸酶降解抗性、增加的细胞摄取和/或增加的靶核酸结合亲和力。iRNA的额外区域可以充当能够切割RNA:DNA或RNA:RNA杂交分子的酶的底物。举例而言,RNase H是一种裂解RNA:DNA双链体的RNA链的细胞内切核酸酶。因此,RNase H的激活导致RNA靶标的裂解,从而大大增强iRNA抑制基因表达的效率。因此,与杂交至相同靶区域的硫代磷酸酯脱氧dsRNA相比,可以在使用嵌合dsRNA时,经常用较短的iRNA获得可比较的结果。可以常规地通过凝胶电泳并且如果必要的话联合本领域中已知的核酸杂交技术来检测该RNA靶标的裂解。

在某些实例中,iRNA的RNA可以通过非配体基团来进行修饰。许多非配体分子已经被共轭到iRNA上以增强该iRNA的活性、细胞分布或细胞摄取,并且用于进行此类共轭的程序在科学文献中是可获得的。这类非配体部分包括脂质部分,诸如胆固醇(久保(Kubo),T.等人,生物化学与生物物理学研究通讯(Biochem.Biophys.Res.Comm.)2007,365(1):54-61;莱特辛格(Letsinger)等人,美国国家科学院院刊(Proc.Natl.Acad.Sci.USA),1989,86:6553)、胆酸(马诺哈兰(Manoharan)等人,生物有机化学与医药化学通讯(Bioorg.Med.Chem.Lett.),1994,4:1053)、硫醚例如己基-S-三苯甲基硫醇(马诺哈兰等人,纽约科学院纪事(Ann.N.Y.Acad.Sci),1992,660:306;马诺哈兰等人,生物有机化学与医药化学通讯,1993,3:2765)、巯基胆固醇(奥本豪森(Oberhauser)等人,核酸研究(Nucl.Acids Res.),1992,20:533)、脂肪链例如十二烷二醇或十一烷基残余物(塞森-贝毛拉斯(Saison-Behmoaras)等人,EMBO杂志,1991,10:111;卡巴诺夫(Kabanov)等人,欧洲生物化学学会联盟通讯(FEBS Lett.),1990,259:327;斯维纳楚克(Svinarchuk)等人,生物化学(Biochimie),1993,75:49)、磷脂例如二十六烷基-外消旋-甘油或三乙基铵1,2-二-O-十六烷基-外消旋-甘油-3-H-膦酸酯(马诺哈兰等人,四面体通讯(Tetrahedron Lett.),1995,36:3651;谢(Shea)等人,核酸研究,1990,18:3777)、多胺或聚乙二醇链(马诺哈兰等人,核苷&核苷酸(Nucleosides&Nucleotides),1995,14:969)、或金刚烷乙酸(马诺哈兰等人,四面体通讯,1995,36:3651)、棕榈基部分(米什拉(Mishra)等人,生物化学与生物物理学学报,1995,1264:229)、或十八胺或己基氨基-羰基-羟胆固醇部分(克鲁克(Crooke)等人,药理学与实验治疗学杂志(J.Pharmacol.Exp.Ther.),1996,277:923)。教导此类RNA共轭物的制备的代表性美国专利已经在上文列出。典型的共轭方案涉及在序列的一个或多个位置处合成具有氨基接头的RNA。然后使用适当的偶联剂或活化剂使该氨基基团与被共轭的分子进行反应。可以用仍与固相载体结合或在裂解RNA之后处于溶液相中的RNA来进行共轭反应。通过HPLC纯化RNA共轭物典型地提供纯的共轭物。

V.本发明的iRNA的递送

可以通过许多不同方式实现本发明的iRNA向一种细胞的递送,该细胞例如受试者内的细胞,如人受试者(例如,有需要的受试者,如患有APOC3相关疾病的受试者)。例如,可以通过在体外或体内使细胞与本发明的iRNA接触来进行递送。还可以通过向受试者给予包含iRNA(例如dsRNA)的组合物来直接进行体内递送。可替代地,可以通过施用编码和指导iRNA表达的一种或多种载体间接地进行体内递送。这些替代方案在后文进一步论述。

通常,递送(体外或体内)核酸分子的任何方法可以适应于随本发明的iRNA使用(参见例如阿赫塔尔(Akhtar)S.和朱利安(Julian)RL.(1992)细胞生物学趋势(TrendsCell.Biol.)2(5):139-144和WO94/02595,通过引用以其全文结合在此)。对于体内递送,为了递送iRNA分子所考虑的因素包括例如,所递送的分子的生物稳定性、非特异性效应的预防以及所递送的分子在靶组织中的累积。可以通过局部给予,例如通过直接注射或植入到组织中或局部给予制剂来使iRNA的非特异性效应最小化。向治疗部位局部给予使试剂的局部浓度最大化,限制该试剂向全身组织的暴露,该全身组织否则可以受该试剂损害或可以降解该试剂,并且容许给予较低总剂量的iRNA分子。若干研究已经显示在局部给予iRNA时成功敲低基因产物。例如,通过在食蟹猴中玻璃体内注射(托伦蒂诺(Tolentino)MJ.等人(2004)视网膜(Retina)24:132-138)和在小鼠中视网膜下注射(赖希(Reich)SJ.等人(2003)分子视觉(Mol.Vis.)9:210-216)进行的VEGF dsRNA眼内递送均显示出在年龄相关的黄斑变性的实验模型中预防新血管形成。此外,在小鼠中直接肿瘤内注射dsRNA缩减肿瘤体积(皮尔(Pille),J.等人,(2005)分子治疗(Mol.Ther.)11:267-274)并且可以延长荷瘤小鼠的存活期(金姆(Kim),WJ.等人,(2006)分子治疗14:343-350;李(Li),S.等人,(2007)分子治疗15:515-523)。也已经示出通过直接注射将RNA干扰成功局部递送递至CNS(多恩(Dorn),G.等人,(2004)核酸(Nucleic Acids)32:e49;谭(Tan),PH.等人,(2005)基因治疗(Gene Ther.)12:59-66;牧村(Makimura),H.等人,(2002)BMC神经科学(BMC Neurosci.)3:18;希什金娜(Shishkina),GT.等人,(2004)神经科学(Neuroscience)129:521-528;塔克尔(Thakker),ER.等人,(2004)美国国家科学院院刊(Proc.Natl.Acad.Sci.U.S.A.)101:17270-17275;阿卡尼亚(Akaneya),Y.等人,(2005)神经生理学期刊(J.Neurophysiol.)93:594-602)并且通过鼻内给予成功递送至肺(霍华德(Howard),KA.等人,(2006)分子治疗14:476-484;张(Zhang),X.等人,(2004)生物化学杂志(J.Biol.Chem.)279:10677-10684;比特科(Bitko),V.等人,(2005)自然医学(Nat.Med.)11:50-55)。对于全身性给予iRNA用于治疗疾病,可以将RNA修饰或可替代地使用药物递送系统进行递送;两种方法均起到防止dsRNA被体内核酸内切酶和核酸外切酶快速降解的作用。对RNA或药物载体的修饰还可以容许iRNA组合物靶向靶组织,并且避免不希望的脱靶效应。iRNA分子可以通过化学共轭至亲脂性基团如胆固醇进行修饰以增强细胞摄取和防止降解。例如将与亲脂性胆固醇部分共轭的针对ApoB的iRNA全身注射到小鼠中并且导致肝脏和空肠两者中apoB mRNA的敲减(苏兹赫克(Soutschek)J.等人(2004)自然432:173-178)。已经显示iRNA与适配体的共轭在前列腺癌的小鼠模型中抑制肿瘤生长并且介导肿瘤消退(麦克纳马拉(McNamara)JO.等人(2006)自然生物技术(Nat.Biotechnol.)24:1005-1015)。在替代实施例中,可以使用药物递送系统如纳米颗粒、树状物、聚合物、脂质体或阳离子递送系统递送iRNA。带正电荷的阳离子递送系统促进(带负电荷的)iRNA分子的结合并且也在带负电荷的细胞膜增强相互作用以容许iRNA由细胞高效摄取。阳离子脂质、树状物或聚合物可以与iRNA结合或被诱导以形成包装siRNA的囊泡或胶束(参见例如金姆(Kim)SH.等人(2008)控制释放期刊(Journal ofControlled Release)129(2):107-116)。囊泡或胶束的形成进一步防止全身给予时iRNA的降解。用于制备和给予阳离子-iRNA复合物的方法很好地在本领域普通技术人员的能力范围内(参见例如,索伦森(Sorensen),DR.等人,(2003)分子生物学杂志327:761-766;维尔马(Verma),UN.等人,(2003)临床癌症研究(Clin.Cancer Res.)9:1291-1300;阿诺德(ArnoId),AS等人,(2007)高血压杂志(J.Hypertens.)25:197-205,这些文献的全部内容通过引用结合在此)。可用于全身性递送iRNA的药物递送系统的一些非限制性实例包括DOTAP(索伦森,DR.等人,(2003),上文;维尔马,UN.等人,(2003),上文)、Oligofectamine、“固体核酸脂质粒子”(齐默尔曼(Zimmermann),TS.等人,(2006)自然441:111-114)、心磷脂(钱(Chien),PY.等人,(2005)癌症基因治疗12:321-328;帕尔(Pal),A.等人,(2005)国际肿瘤学杂志(Int J.Oncol.)26:1087-1091)、聚乙亚胺(博奈特(Bonnet)ME.等人(2008)药学研究(Pharm.Res.)8月16日电子出版先于印刷版;艾格纳(Aigner),A.(2006)生物医学与生物技术杂志(J.Biomed.Biotechnol.)71659)、Arg-Gly-Asp(RGD)肽(刘(Liu),S.(2006)分子制药学(Mol.Pharm.)3:472-487)以及聚酰胺型胺类(托马里亚(Tomalia),DA.等人(2007)生物化学会汇刊(Biochem.Soc.Trans.)35:61-67;柳(Yoo),H.等人,(1999)药学研究(Pharm.Res.)16:1799-1804)。在一些实施例中,iRNA与环糊精形成用于全身给予的复合物。用于给予iRNA和环糊精的药物组合物的方法可以在美国专利号7,427,605中找到,所述专利通过引用以其全文结合在此。

A.本发明的载体编码的iRNA

靶向APOC3基因的iRNA可以从插入DNA或RNA载体中的转录单位表达(参见,例如,蒂尔(Couture),A等人,TIG.(1996),12:5-10;斯基尔伦(Skillern),A.等人,国际PCT公开号WO 00/22113;康拉德(Conrad),国际PCT公开号WO 00/22114;以及康拉德,美国专利号6,054,299)。取决于使用的具体构建体和靶组织或细胞类型,表达可以是瞬时的(在小时至周数量级上)或持久的(数周至数月或更长时间)。可以将这些转基因作为线性构建体、环状质粒或可以是整合或非整合载体的病毒载体引入。转基因也可以如此构建以允许它作为染色体外质粒遗传(加斯曼(Gassmann)等人,美国国家科学院院刊(1995)92:1292)。

iRNA的单条链或多条链可以从表达载体上的启动子转录。当两个单独的链有待被表达以产生例如dsRNA时,可以将两个单独的表达载体共引入(例如通过转染或感染)到靶细胞中。可替代地,dsRNA的每个单独链可以通过均位于相同表达质粒上的启动子来转录。在一个实施例中,dsRNA被表达为通过一种接头多核苷酸序列连接的反向重复多核苷酸,这样使得该dsRNA具有茎环结构。

iRNA表达载体通常是DNA质粒或病毒载体。与真核细胞相容的表达载体、优选地与脊椎动物细胞相容的那些,可以用来产生用于表达如在此所描述的iRNA的重组构建体。真核细胞表达载体是本领域中熟知的并且从许多商业来源可获得。典型地,提供含有用于插入希望的核酸区段的合宜限制性位点的这类载体。表达iRNA的载体的递送可以是全身性的,如通过静脉内或肌内施用,通过施用至从患者移植出来、随后重新引入患者的靶细胞或通过允许向所需靶细胞引入的任何其他手段。

iRNA表达质粒可以被转染到靶细胞中作为具有阳离子脂质载体(例如,Oligofectamine)或基于非阳离子脂质的载体(例如,Transit-TKO

可以随在此所述的方法和组合物一起使用的病毒载体系统包括但不局限于:(a)腺病毒载体;(b)逆转录病毒载体,包括但不局限于慢病毒载体、莫洛尼鼠白血病病毒等;(c)腺伴随病毒载体;(d)单纯疱疹病毒载体;(e)SV 40载体;(f)多瘤病毒载体;(g)乳头瘤病毒载体;(h)微小核糖核酸病毒载体;(i)痘病毒载体,如正痘病毒,例如痘苗病毒载体,或禽痘病毒,例如金丝雀痘病毒或鸡痘病毒;以及(j)辅助病毒依赖性腺病毒或无肠腺病毒。复制缺陷型病毒也可以有利的。不同的载体将并入或将不并入细胞的基因组中。如果需要,构建体可以包含病毒序列以用于转染。可替代地,构建体可以并入能够发生附加体型复制的载体(例如EPV和EBV载体)中。用于重组表达iRNA的构建体通常将需要调节元件,例如启动子、增强子等,以确保iRNA在靶细胞中的表达。以下进一步描述针对载体和构建体考虑的其他方面。

有用于递送iRNA的载体将包括足以在希望的靶细胞或组织中表达iRNA的调节元件(启动子、增强子等)。可以选择调节元件以提供组成型或调节/诱导型表达。

可以精确地调节iRNA的表达,例如通过使用对某些生理调节物(例如循环型葡萄糖水平或激素)敏感的诱导型调节序列(多赫替(Docherty)等人,1994,FASEB杂志8:20-24)。适合于在细胞中或哺乳动物中控制dsRNA表达的此类诱导型表达系统包括例如由以下各项进行的调节:蜕皮激素、雌激素、黄体酮、四环素、二聚作用的化学诱导物以及异丙基-β-D1-硫代吡喃半乳糖苷(IPTG)。本领域技术人员将能够基于iRNA转基因的预期用途选择适宜的调节/启动子序列。

可以使用含有编码iRNA的核酸序列的病毒载体。例如,可以使用逆转录病毒载体(参见米列尔(Miller)等人,酶学方法(Meth.Enzymol.)217:581-599(1993))。这些逆转录病毒载体含有对于病毒基因组正确包装并整合入宿主细胞DNA必需的组分。将编码iRNA的核酸序列克隆至促进该核酸递送入患者的一种或多种载体中。关于逆转录病毒载体的更多细节可以在例如博森(Boesen)等人,生物疗法(Biotherapy)6:291-302(1994)找到,所述文献描述使用逆转录病毒载体递送mdr1基因至造血干细胞,以便使得干细胞对化疗更耐受。说明基因治疗中逆转录病毒载体用途的其他参考文献是:克劳斯(Clowes)等人,临床研究杂志(J.Clin.Invest.)93:644-651(1994);金(Kiem)等人,血液83:1467-1473(1994);萨尔蒙斯(Salmons)和贡兹堡(Gunzberg),人类基因治疗(Human Gene Therapy)4:129-141(1993);以及格罗斯曼(Grossman)和威尔逊(Wilson),遗传学与发育学新观点(Curr.Opin.in Genetics and Devel.)3:110-114(1993)。意欲使用的慢病毒载体包括例如描述于美国专利号6,143,520;5,665,557和5,981,276中的基于HIV的载体,这些美国专利通过引用结合在此。

还想到腺病毒用于本发明的iRNA的递送中。腺病毒是特别有吸引力的媒介物,例如用于递送基因至呼吸道上皮。腺病毒天然地感染呼吸道上皮,在那里它们引起轻微疾病。基于腺病毒的递送系统的其他靶是肝脏、中枢神经系统、内皮细胞和肌肉。腺病毒具有能够感不分裂细胞的优点。科扎斯凯(Kozarsky)和威尔森,遗传学与发育学新观点3:499-503(1993)提出基于腺病毒的基因疗法的综述。布特(Bout)等人,人类基因疗法5:3-10(1994)展示了腺病毒载体将基因转移至恒河猴呼吸道上皮的用途。基因治疗中使用腺病毒的其他实例可以在罗森菲尔德(Rosenfeld)等人,科学252:431-434(1991);罗森菲尔德等人,细胞68:143-155(1992);马斯特兰杰利(Mastrangeli)等人,临床研究杂志91:225-234(1993);PCT公开WO94/12649;以及王(Wang)等人,基因治疗2:775-783(1995)中找到。用于表达本发明中表征的iRNA的合适AV载体、用于构建重组AV载体的方法和用于递送该载体至靶细胞中的方法在夏(Xia)H等人,(2002),自然生物技术(Nat.Biotech.)20:1006-1010中描述。

也可以使用腺伴随病毒(AAV)载体来递送本发明的iRNA(沃尔什(Walsh)等人,实验生物学与实验医学会会报(Proc.Soc.Exp.Biol.Med.)204:289-300(1993);美国专利号5,436,146)。在一个实施例中,iRNA可以从具有例如U6或H1 RNA启动子或细胞巨化病毒(CMV)启动子的重组AAV载体作为两个单独的互补性单链RNA分子表达。用于表达本发明中表征的dsRNA的合适AAV载体、用于构建重组AV载体的方法以及用于递送该载体至靶细胞中的方法在萨穆尔斯基(Samulski)R等人(1987),病毒学杂志(J.Virol.)61:3096-3101;费希尔(Fisher)K J等人(1996),病毒学杂志,70:520-532;萨穆尔斯基R等人(1989),病毒学杂志63:3822-3826;美国专利号5,252,479;美国专利号5,139,941;国际专利申请号WO94/13788;以及国际专利申请号WO 93/24641中描述,这些文献的完整披露内容通过引用结合在此。

另一种适合于递送本发明的iRNA的病毒载体是痘病毒如痘苗病毒,例如减毒痘苗病毒如修饰的安卡拉病毒(MVA)或NYVAC、禽痘病毒如鸡痘病毒或金丝雀痘病毒。

病毒载体的向性可以通过用包膜蛋白或来自其他病毒的其他表面抗原来对这些载体假型化而进行修饰,或者适当时通过取代不同的病毒衣壳蛋白而进行修饰。例如慢病毒载体可以是用来自水泡性口炎病毒(VSV)、狂犬病病毒、埃博拉病毒、Mokola等的表面蛋白进行假病毒化。可以通过将载体工程化以表达不同衣壳蛋白血清型,使得AAV载体靶向不同的细胞;参见例如,拉宾诺维茨(Rabinowitz)J E等人,(2002),病毒学杂志76:791-801,这些文献的完整披露内容通过引用结合在此。

载体的药物制剂可以包括在一种可接受的稀释剂中的该载体,或可以包括一种缓释基质,在该缓释基质中该基因递送媒介物被嵌入。可替代地,当该完全的基因递送载体可以从重组细胞(例如逆转录病毒载体)完整地产出的情况下,该药物制剂可以包括产出该基因递送系统的一个或多个细胞。

VI.本发明的药物组合物

本发明还包括包含本发明的iRNA的药物组合物和配制品。在一个实施例中,在此提供了含有如在此所描述的iRNA和药学上可接受的载体的药物组合物。含有iRNA的药物组合物适用于治疗与APOC3基因的表达或活性相关的疾病或障碍。基于递送模型配制这类药物组合物。一个实例是被配制用于经由胃肠外递送,例如皮下(SC)或静脉内(IV)递送来全身给予的组合物。另一个实例是被配制用于例如通过输注到脑,如通过连续泵输注来直接递送到脑实质中的组合物。本发明的这些药物组合物可以足以抑制APOC3基因的表达的剂量给予。通常,本发明的iRNA的适合剂量将处于每天约0.001至约200.0毫克/受体的千克体重范围内,通常处于每天约1mg至50mg/千克体重范围内。例如,dsRNA可以按每个单次剂量约0.01mg/kg、约0.05mg/kg、约0.5mg/kg、约1mg/kg、约1.5mg/kg、约2mg/kg、约2.5mg/kg、约3mg/kg、约3.5mg/kg、约4mg/kg、约4.5mg/kg、约5mg/kg、约10mg/kg、约20mg/kg、约30mg/kg、约40mg/kg、或约50mg/kg给予。

例如,可以按以下剂量给予dsRNA:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8、8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9或约10mg/kg。这些列举值的中间值与范围也意在成为本发明的部分。

在另一个实施例中,以约0.1mg/kg至约50mg/kg、约0.25mg/kg至约50mg/kg、约0.5mg/kg至约50mg/kg、约0.75mg/kg至约50mg/kg、约1mg/kg至约50mg/kg、约1.5mg/kg至约50mg/kg、约2mg/kg至约50mg/kg、约2.5mg/kg至约50mg/kg、约3mg/kg至约50mg/kg、约3.5mg/kg至约50mg/kg、约4mg/kg至约50mg/kg、约4.5mg/kg至约50mg/kg、约5mg/kg至约50mg/kg、约7.5mg/kg至约50mg/kg、约10mg/kg至约50mg/kg、约15mg/kg至约50mg/kg、约20mg/kg至约50mg/kg、约20mg/kg至约50mg/kg、约25mg/kg至约50mg/kg、约25mg/kg至约50mg/kg、约30mg/kg至约50mg/kg、约35mg/kg至约50mg/kg、约40mg/kg至约50mg/kg、约45mg/kg至约50mg/kg、约0.1mg/kg至约45mg/kg、约0.25mg/kg至约45mg/kg、约0.5mg/kg至约45mg/kg、约0.75mg/kg至约45mg/kg、约1mg/kg至约45mg/kg、约1.5mg/kg至约45mg/kg、约2mg/kg至约45mg/kg、约2.5mg/kg至约45mg/kg、约3mg/kg至约45mg/kg、约3.5mg/kg至约45mg/kg、约4mg/kg至约45mg/kg、约4.5mg/kg至约45mg/kg、约5mg/kg至约45mg/kg、约7.5mg/kg至约45mg/kg、约10mg/kg至约45mg/kg、约15mg/kg至约45mg/kg、约20mg/kg至约45mg/kg、约20mg/kg至约45mg/kg、约25mg/kg至约45mg/kg、约25mg/kg至约45mg/kg、约30mg/kg至约45mg/kg、约35mg/kg至约45mg/kg、约40mg/kg至约45mg/kg、约0.1mg/kg至约40mg/kg、约0.25mg/kg至约40mg/kg、约0.5mg/kg至约40mg/kg、约0.75mg/kg至约40mg/kg、约1mg/kg至约40mg/mg、约1.5mg/kg至约40mg/kg、约2mg/kg至约40mg/kg、约2.5mg/kg至约40mg/kg、约3mg/kg至约40mg/kg、约3.5mg/kg至约40mg/kg、约4mg/kg至约40mg/kg、约4.5mg/kg至约40mg/kg、约5mg/kg至约40mg/kg、约7.5mg/kg至约40mg/kg、约10mg/kg至约40mg/kg、约15mg/kg至约40mg/kg、约20mg/kg至约40mg/kg、约20mg/kg至约40mg/kg、约25mg/kg至约40mg/kg、约25mg/kg至约40mg/kg、约30mg/kg至约40mg/kg、约35mg/kg至约40mg/kg、约0.1mg/kg至约30mg/kg、约0.25mg/kg至约30mg/kg、约0.5mg/kg至约30mg/kg、约0.75mg/kg至约30mg/kg、约1mg/kg至约30mg/mg、约1.5mg/kg至约30mg/kb、约2mg/kg至约30mg/kg、约2.5mg/kg至约30mg/kg、约3mg/kg至约30mg/kg、约3.5mg/kg至约30mg/kg、约4mg/kg至约30mg/kg、约4.5mg/kg至约30mg/kg、约5mg/kg至约30mg/kg、约7.5mg/kg至约30mg/kg、约10mg/kg至约30mg/kg、约15mg/kg至约30mg/kg、约20mg/kg至约30mg/kg、约20mg/kg至约30mg/kg、约25mg/kg至约30mg/kg、约0.1mg/kg至约20mg/kg、约0.25mg/kg至约20mg/kg、约0.5mg/kg至约20mg/kg、约0.75mg/kg至约20mg/kg、约1mg/kg至约20mg/mg、约1.5mg/kg至约20mg/kb、约2mg/kg至约20mg/kg、约2.5mg/kg至约20mg/kg、约3mg/kg至约20mg/kg、约3.5mg/kg至约20mg/kg、约4mg/kg至约20mg/kg、约4.5mg/kg至约20mg/kg、约5mg/kg至约20mg/kg、约7.5mg/kg至约20mg/kg、约10mg/kg至约20mg/kg或约15mg/kg至约20mg/kg的剂量给予该dsRNA。这些列举值的中间值与范围也意在成为本发明的部分。

例如,可以约0.01mg/kg、0.02mg/kg、0.03mg/kg、0.04mg/kg、0.05mg/kg、0.06mg/kg、0.07mg/kg、0.08mg/kg、0.09mg/kg、0.1mg/kg、0.2mg/kg、0.3mg/kg、0.4mg/kg、0.5mg/kg、0.6mg/kg、0.7mg/kg、0.8mg/kg、0.9mg/kg、1mg/kg、1.1mg/kg、1.2mg/kg、1.3mg/kg、1.4mg/kg、1.5mg/kg、1.6mg/kg、1.7mg/kg、1.8mg/kg、1.9mg/kg、2mg/kg、2.1mg/kg、2.2mg/kg、2.3mg/kg、2.4mg/kg、2.5mg/kg、2.6mg/kg、2.7mg/kg、2.8mg/kg、2.9mg/kg、3mg/kg、3.1mg/kg、3.2mg/kg、3.3mg/kg、3.4mg/kg、3.5mg/kg、3.6mg/kg、3.7mg/kg、3.8mg/kg、3.9mg/kg、4mg/kg、4.1mg/kg、4.2mg/kg、4.3mg/kg、4.4mg/kg、4.5mg/kg、4.6mg/kg、4.7mg/kg、4.8mg/kg、4.9mg/kg、5mg/kg、5.1mg/kg、5.2mg/kg、5.3mg/kg、5.4mg/kg、5.5mg/kg、5.6mg/kg、5.7mg/kg、5.8mg/kg、5.9mg/kg、6mg/kg、6.1mg/kg、6.2mg/kg、6.3mg/kg、6.4mg/kg、6.5mg/kg、6.6mg/kg、6.7mg/kg、6.8mg/kg、6.9mg/kg、7mg/kg、7.1mg/kg、7.2mg/kg、7.3mg/kg、7.4mg/kg、7.5mg/kg、7.6mg/kg、7.7mg/kg、7.8mg/kg、7.9mg/kg、8mg/kg、8.1mg/kg、8.2mg/kg、8.3mg/kg、8.4mg/kg、8.5mg/kg、8.6mg/kg、8.7mg/kg、8.8mg/kg、8.9mg/kg、9mg/kg、9.1mg/kg、9.2mg/kg、9.3mg/kg、9.4mg/kg、9.5mg/kg、9.6mg/kg、9.7mg/kg、9.8mg/kg、9.9mg/kg或约10mg/kg的剂量给予该dsRNA。这些列举值的中间值与范围也意在成为本发明的部分。

在另一个实施例中,以约0.5mg/kg至约50mg/kg、约0.75mg/kg至约50mg/kg、约1mg/kg至约50mg/kg、约1.5mg/kg至约50mg/kg、约2mg/kg至约50mg/kg、约2.5mg/kg至约50mg/kg、约3mg/kg至约50mg/kg、约3.5mg/kg至约50mg/kg、约4mg/kg至约50mg/kg、约4.5mg/kg至约50mg/kg、约5mg/kg至约50mg/kg、约7.5mg/kg至约50mg/kg、约10mg/kg至约50mg/kg、约15mg/kg至约50mg/kg、约20mg/kg至约50mg/kg、约20mg/kg至约50mg/kg、约25mg/kg至约50mg/kg、约25mg/kg至约50mg/kg、约30mg/kg至约50mg/kg、约35mg/kg至约50mg/kg、约40mg/kg至约50mg/kg、约45mg/kg至约50mg/kg、约0.5mg/kg至约45mg/kg、约0.75mg/kg至约45mg/kg、约1mg/kg至约45mg/kg、约1.5mg/kg至约45mg/kg、约2mg/kg至约45mg/kg、约2.5mg/kg至约45mg/kg、约3mg/kg至约45mg/kg、约3.5mg/kg至约45mg/kg、约4mg/kg至约45mg/kg、约4.5mg/kg至约45mg/kg、约5mg/kg至约45mg/kg、约7.5mg/kg至约45mg/kg、约10mg/kg至约45mg/kg、约15mg/kg至约45mg/kg、约20mg/kg至约45mg/kg、约20mg/kg至约45mg/kg、约25mg/kg至约45mg/kg、约25mg/kg至约45mg/kg、约30mg/kg至约45mg/kg、约35mg/kg至约45mg/kg、约40mg/kg至约45mg/kg、约0.5mg/kg至约40mg/kg、约0.75mg/kg至约40mg/kg、约1mg/kg至约40mg/mg、约1.5mg/kg至约40mg/kg、约2mg/kg至约40mg/kg、约2.5mg/kg至约40mg/kg、约3mg/kg至约40mg/kg、约3.5mg/kg至约40mg/kg、约4mg/kg至约40mg/kg、约4.5mg/kg至约40mg/kg、约5mg/kg至约40mg/kg、约7.5mg/kg至约40mg/kg、约10mg/kg至约40mg/kg、约15mg/kg至约40mg/kg、约20mg/kg至约40mg/kg、约20mg/kg至约40mg/kg、约25mg/kg至约40mg/kg、约25mg/kg至约40mg/kg、约30mg/kg至约40mg/kg、约35mg/kg至约40mg/kg、约0.5mg/kg至约30mg/kg、约0.75mg/kg至约30mg/kg、约1mg/kg至约30mg/mg、约1.5mg/kg至约30mg/kb、约2mg/kg至约30mg/kg、约2.5mg/kg至约30mg/kg、约3mg/kg至约30mg/kg、约3.5mg/kg至约30mg/kg、约4mg/kg至约30mg/kg、约4.5mg/kg至约30mg/kg、约5mg/kg至约30mg/kg、约7.5mg/kg至约30mg/kg、约10mg/kg至约30mg/kg、约15mg/kg至约30mg/kg、约20mg/kg至约30mg/kg、约20mg/kg至约30mg/kg、约25mg/kg至约30mg/kg、约0.5mg/kg至约20mg/kg、约0.75mg/kg至约20mg/kg、约1mg/kg至约20mg/mg、约1.5mg/kg至约20mg/kb、约2mg/kg至约20mg/kg、约2.5mg/kg至约20mg/kg、约3mg/kg至约20mg/kg、约3.5mg/kg至约20mg/kg、约4mg/kg至约20mg/kg、约4.5mg/kg至约20mg/kg、约5mg/kg至约20mg/kg、约7.5mg/kg至约20mg/kg、约10mg/kg至约20mg/kg或约15mg/kg至约20mg/kg的剂量给予该dsRNA。在一个实施例中,以约10mg/kg至约30mg/kg的剂量给予该dsRNA。这些列举值的中间值与范围也意在成为本发明的部分。

例如,可以例如皮下或静脉内给予受试者单次治疗量的iRNA,如约0.1mg/kg、0.125mg/kg、0.15mg/kg、0.175mg/kg、0.2mg/kg、0.225mg/kg、0.25mg/kg、0.275mg/kg、0.3mg/kg、0.325mg/kg、0.35mg/kg、0.375mg/kg、0.4mg/kg、0.425mg/kg、0.45mg/kg、0.475mg/kg、0.5mg/kg、0.525mg/kg、0.55mg/kg、0.575mg/kg、0.6mg/kg、0.625mg/kg、0.65mg/kg、0.675mg/kg、0.7mg/kg、0.725mg/kg、0.75mg/kg、0.775mg/kg、0.8mg/kg、0.825mg/kg、0.85mg/kg、0.875mg/kg、0.9mg/kg、0.925mg/kg、0.95mg/kg、0.975mg/kg、1mg/kg、1.1mg/kg、1.2mg/kg、1.3mg/kg、1.4mg/kg、1.5mg/kg、1.6mg/kg、1.7mg/kg、1.8mg/kg、1.9mg/kg、2mg/kg、2.1mg/kg、2.2mg/kg、2.3mg/kg、2.4mg/kg、2.5mg/kg、2.6mg/kg、2.7mg/kg、2.8mg/kg、2.9mg/kg、3mg/kg、3.1mg/kg、3.2mg/kg、3.3mg/kg、3.4mg/kg、3.5mg/kg、3.6mg/kg、3.7mg/kg、3.8mg/kg、3.9mg/kg、4mg/kg、4.1mg/kg、4.2mg/kg、4.3mg/kg、4.4mg/kg、4.5mg/kg、4.6mg/kg、4.7mg/kg、4.8mg/kg、4.9mg/kg、5mg/kg、5.1mg/kg、5.2mg/kg、5.3mg/kg、5.4mg/kg、5.5mg/kg、5.6mg/kg、5.7mg/kg、5.8mg/kg、5.9mg/kg、6mg/kg、6.1mg/kg、6.2mg/kg、6.3mg/kg、6.4mg/kg、6.5mg/kg、6.6mg/kg、6.7mg/kg、6.8mg/kg、6.9mg/kg、7mg/kg、7.1mg/kg、7.2mg/kg、7.3mg/kg、7.4mg/kg、7.5mg/kg、7.6mg/kg、7.7mg/kg、7.8mg/kg、7.9mg/kg、8mg/kg、8.1mg/kg、8.2mg/kg、8.3mg/kg、8.4mg/kg、8.5mg/kg、8.6mg/kg、8.7mg/kg、8.8mg/kg、8.9mg/kg、9mg/kg、9.1mg/kg、9.2mg/kg、9.3mg/kg、9.4mg/kg、9.5mg/kg、9.6mg/kg、9.7mg/kg、9.8mg/kg、9.9mg/kg、10mg/kg、10.5mg/kg、11mg/kg、11.5mg/kg、12mg/kg、12.5mg/kg、13mg/kg、13.5mg/kg、14mg/kg、14.5mg/kg、15mg/kg、15.5mg/kg、16mg/kg、16.5mg/kg、17mg/kg、17.5mg/kg、18mg/kg、18.5mg/kg、19mg/kg、19.5mg/kg、20mg/kg、20.5mg/kg、21mg/kg、21.5mg/kg、22mg/kg、22.5mg/kg、23mg/kg、23.5mg/kg、24mg/kg、24.5mg/kg、25mg/kg、25.5mg/kg、26mg/kg、26.5mg/kg、27mg/kg、27.5mg/kg、28mg/kg、28.5mg/kg、29mg/kg、29.5mg/kg、30mg/kg、31mg/kg、32mg/kg、33mg/kg、34mg/kg、34mg/kg、35mg/kg、36mg/kg、37mg/kg、38mg/kg、39mg/kg、40mg/kg、41mg/kg、42mg/kg、43mg/kg、44mg/kg、45mg/kg、46mg/kg、47mg/kg、48mg/kg、49mg/kg或约50mg/kg。这些列举值的中间值与范围也意在成为本发明的部分。

在一些实施例中,例如皮下或静脉内给予受试者多次剂量的治疗量的iRNA,如约0.1mg/kg、0.125mg/kg、0.15mg/kg、0.175mg/kg、0.2mg/kg、0.225mg/kg、0.25mg/kg、0.275mg/kg、0.3mg/kg、0.325mg/kg、0.35mg/kg、0.375mg/kg、0.4mg/kg、0.425mg/kg、0.45mg/kg、0.475mg/kg、0.5mg/kg、0.525mg/kg、0.55mg/kg、0.575mg/kg、0.6mg/kg、0.625mg/kg、0.65mg/kg、0.675mg/kg、0.7mg/kg、0.725mg/kg、0.75mg/kg、0.775mg/kg、0.8mg/kg、0.825mg/kg、0.85mg/kg、0.875mg/kg、0.9mg/kg、0.925mg/kg、0.95mg/kg、0.975mg/kg、1mg/kg、1.1mg/kg、1.2mg/kg、1.3mg/kg、1.4mg/kg、1.5mg/kg、1.6mg/kg、1.7mg/kg、1.8mg/kg、1.9mg/kg、2mg/kg、2.1mg/kg、2.2mg/kg、2.3mg/kg、2.4mg/kg、2.5mg/kg、2.6mg/kg、2.7mg/kg、2.8mg/kg、2.9mg/kg、3mg/kg、3.1mg/kg、3.2mg/kg、3.3mg/kg、3.4mg/kg、3.5mg/kg、3.6mg/kg、3.7mg/kg、3.8mg/kg、3.9mg/kg、4mg/kg、4.1mg/kg、4.2mg/kg、4.3mg/kg、4.4mg/kg、4.5mg/kg、4.6mg/kg、4.7mg/kg、4.8mg/kg、4.9mg/kg、5mg/kg、5.1mg/kg、5.2mg/kg、5.3mg/kg、5.4mg/kg、5.5mg/kg、5.6mg/kg、5.7mg/kg、5.8mg/kg、5.9mg/kg、6mg/kg、6.1mg/kg、6.2mg/kg、6.3mg/kg、6.4mg/kg、6.5mg/kg、6.6mg/kg、6.7mg/kg、6.8mg/kg、6.9mg/kg、7mg/kg、7.1mg/kg、7.2mg/kg、7.3mg/kg、7.4mg/kg、7.5mg/kg、7.6mg/kg、7.7mg/kg、7.8mg/kg、7.9mg/kg、8mg/kg、8.1mg/kg、8.2mg/kg、8.3mg/kg、8.4mg/kg、8.5mg/kg、8.6mg/kg、8.7mg/kg、8.8mg/kg、8.9mg/kg、9mg/kg、9.1mg/kg、9.2mg/kg、9.3mg/kg、9.4mg/kg、9.5mg/kg、9.6mg/kg、9.7mg/kg、9.8mg/kg、9.9mg/kg、10mg/kg、10.5mg/kg、11mg/kg、11.5mg/kg、12mg/kg、12.5mg/kg、13mg/kg、13.5mg/kg、14mg/kg、14.5mg/kg、15mg/kg、15.5mg/kg、16mg/kg、16.5mg/kg、17mg/kg、17.5mg/kg、18mg/kg、18.5mg/kg、19mg/kg、19.5mg/kg、20mg/kg、20.5mg/kg、21mg/kg、21.5mg/kg、22mg/kg、22.5mg/kg、23mg/kg、23.5mg/kg、24mg/kg、24.5mg/kg、25mg/kg、25.5mg/kg、26mg/kg、26.5mg/kg、27mg/kg、27.5mg/kg、28mg/kg、28.5mg/kg、29mg/kg、29.5mg/kg、30mg/kg、31mg/kg、32mg/kg、33mg/kg、34mg/kg、34mg/kg、35mg/kg、36mg/kg、37mg/kg、38mg/kg、39mg/kg、40mg/kg、41mg/kg、42mg/kg、43mg/kg、44mg/kg、45mg/kg、46mg/kg、47mg/kg、48mg/kg、49mg/kg或约50mg/kg。多次剂量方案可以包括每日给予治疗量的iRNA,如持续两天、三天、四天、五天、六天、七天或更长。

在其他实施例中,例如皮下或静脉内给予受试者重复剂量的治疗量的iRNA,如约0.1mg/kg、0.125mg/kg、0.15mg/kg、0.175mg/kg、0.2mg/kg、0.225mg/kg、0.25mg/kg、0.275mg/kg、0.3mg/kg、0.325mg/kg、0.35mg/kg、0.375mg/kg、0.4mg/kg、0.425mg/kg、0.45mg/kg、0.475mg/kg、0.5mg/kg、0.525mg/kg、0.55mg/kg、0.575mg/kg、0.6mg/kg、0.625mg/kg、0.65mg/kg、0.675mg/kg、0.7mg/kg、0.725mg/kg、0.75mg/kg、0.775mg/kg、0.8mg/kg、0.825mg/kg、0.85mg/kg、0.875mg/kg、0.9mg/kg、0.925mg/kg、0.95mg/kg、0.975mg/kg、1mg/kg、1.1mg/kg、1.2mg/kg、1.3mg/kg、1.4mg/kg、1.5mg/kg、1.6mg/kg、1.7mg/kg、1.8mg/kg、1.9mg/kg、2mg/kg、2.1mg/kg、2.2mg/kg、2.3mg/kg、2.4mg/kg、2.5mg/kg、2.6mg/kg、2.7mg/kg、2.8mg/kg、2.9mg/kg、3mg/kg、3.1mg/kg、3.2mg/kg、3.3mg/kg、3.4mg/kg、3.5mg/kg、3.6mg/kg、3.7mg/kg、3.8mg/kg、3.9mg/kg、4mg/kg、4.1mg/kg、4.2mg/kg、4.3mg/kg、4.4mg/kg、4.5mg/kg、4.6mg/kg、4.7mg/kg、4.8mg/kg、4.9mg/kg、5mg/kg、5.1mg/kg、5.2mg/kg、5.3mg/kg、5.4mg/kg、5.5mg/kg、5.6mg/kg、5.7mg/kg、5.8mg/kg、5.9mg/kg、6mg/kg、6.1mg/kg、6.2mg/kg、6.3mg/kg、6.4mg/kg、6.5mg/kg、6.6mg/kg、6.7mg/kg、6.8mg/kg、6.9mg/kg、7mg/kg、7.1mg/kg、7.2mg/kg、7.3mg/kg、7.4mg/kg、7.5mg/kg、7.6mg/kg、7.7mg/kg、7.8mg/kg、7.9mg/kg、8mg/kg、8.1mg/kg、8.2mg/kg、8.3mg/kg、8.4mg/kg、8.5mg/kg、8.6mg/kg、8.7mg/kg、8.8mg/kg、8.9mg/kg、9mg/kg、9.1mg/kg、9.2mg/kg、9.3mg/kg、9.4mg/kg、9.5mg/kg、9.6mg/kg、9.7mg/kg、9.8mg/kg、9.9mg/kg、10mg/kg、10.5mg/kg、11mg/kg、11.5mg/kg、12mg/kg、12.5mg/kg、13mg/kg、13.5mg/kg、14mg/kg、14.5mg/kg、15mg/kg、15.5mg/kg、16mg/kg、16.5mg/kg、17mg/kg、17.5mg/kg、18mg/kg、18.5mg/kg、19mg/kg、19.5mg/kg、20mg/kg、20.5mg/kg、21mg/kg、21.5mg/kg、22mg/kg、22.5mg/kg、23mg/kg、23.5mg/kg、24mg/kg、24.5mg/kg、25mg/kg、25.5mg/kg、26mg/kg、26.5mg/kg、27mg/kg、27.5mg/kg、28mg/kg、28.5mg/kg、29mg/kg、29.5mg/kg、30mg/kg、31mg/kg、32mg/kg、33mg/kg、34mg/kg、34mg/kg、35mg/kg、36mg/kg、37mg/kg、38mg/kg、39mg/kg、40mg/kg、41mg/kg、42mg/kg、43mg/kg、44mg/kg、45mg/kg、46mg/kg、47mg/kg、48mg/kg、49mg/kg或约50mg/kg。重复剂量方法可以包括在规则的基础上给予治疗量的iRNA,如每隔一天、每隔两天、每隔三天、每周两次、每周一次、每隔一周或每月一次。

在某些实施例中,例如,当本发明的组合物包含如在此所描述的dsRNA和脂质时,可以给予受试者治疗量的iRNA,如约0.01mg/kg至约5mg/kg、约0.01mg/kg至约10mg/kg、约0.05mg/kg至约5mg/kg、约0.05mg/kg至约10mg/kg、约0.1mg/kg至约5mg/kg、约0.1mg/kg至约10mg/kg、约0.2mg/kg至约5mg/kg、约0.2mg/kg至约10mg/kg、约0.3mg kg至约5mg/kg、约0.3mg/kg至约10mg/kg、约0.4mg/kg至约5mg/kg、约0.4mg/kg至约10mg/kg、约0.5mg/kg至约5mg/kg、约0.5mg kg至约10mg/kg、约1mg/kg至约5mg/kg、约1mg/kg至约10mg/kg、约1.5mg/kg至约5mg/kg、约1.5mg/kg至约10mg/kg、约2mg/kg至约2.5mg/kg、约2mg/kg至约10mg/kg、约3mg/kg至约5mg/kg、约3mg/kg至约10mg/kg、约3.5mg/kg至约5mg/kg、约4mg/kg至约5mg/kg、约4.5mg/kg至约5mg/kg、约4mg/kg至约10mg/kg、约4.5mg/kg至约10mg/kg、约5mg/kg至约10mg/kg、约5.5mg/kg至约10mg/kg、约6mg/kg至约10mg/kg、约6.5mg/kg至约10mg/kg、约7mg/kg至约10mg/kg、约7.5mg/kg至约10mg/kg、约8mg/kg至约10mg/kg、约8.5mg/kg至约10mg/kg、约9mg/kg至约10mg/kg或约9.5mg/kg至约10mg/kg。这些列举值的中间值与范围也意在成为本发明的部分。

例如,可以按以下剂量给予dsRNA:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8、8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9或约10mg/kg。这些列举值的中间值与范围也意在成为本发明的部分。

在本发明的某些实施例中,例如,当双链RNAi试剂包括一个修饰(例如,在三个连续核苷酸上具有三个相同修饰的一个或多个基序),在该试剂的裂解位点处或附近包括这样一个基序、六个硫代磷酸酯键联以及脂质时,按以下剂量给予这样一种制剂:约0.01至约0.5mg/kg、约0.01至约0.4mg/kg、约0.01至约0.3mg/kg、约0.01至约0.2mg/kg、约0.01至约0.1mg/kg、约0.01mg/kg至约0.09mg/kg、约0.01mg/kg至约0.08mg/kg、约0.01mg/kg至约0.07mg/kg、约0.01mg/kg至约0.06mg/kg、约0.01mg/kg至约0.05mg/kg、约0.02至约0.5mg/kg、约0.02至约0.4mg/kg、约0.02至约0.3mg/kg、约0.02至约0.2mg/kg、约0.02至约0.1mg/kg、约0.02mg/kg至约0.09mg/kg、约0.02mg/kg至约0.08mg/kg、约0.02mg/kg至约0.07mg/kg、约0.02mg/kg至约0.06mg/kg、约0.02mg/kg至约0.05mg/kg、约0.03至约0.5mg/kg、约0.03至约0.4mg/kg、约0.03至约0.3mg/kg、约0.03至约0.2mg/kg、约0.03至约0.1mg/kg、约0.03mg/kg至约0.09mg/kg、约0.03mg/kg至约0.08mg/kg、约0.03mg/kg至约0.07mg/kg、约0.03mg/kg至约0.06mg/kg、约0.03mg/kg至约0.05mg/kg、约0.04至约0.5mg/kg、约0.04至约0.4mg/kg、约0.04至约0.3mg/kg、约0.04至约0.2mg/kg、约0.04至约0.1mg/kg、约0.04mg/kg至约0.09mg/kg、约0.04mg/kg至约0.08mg/kg、约0.04mg/kg至约0.07mg/kg、约0.04mg/kg至约0.06mg/kg、约0.05至约0.5mg/kg、约0.05至约0.4mg/kg、约0.05至约0.3mg/kg、约0.05至约0.2mg/kg、约0.05至约0.1mg/kg、约0.05mg/kg至约0.09mg/kg、约0.05mg/kg至约0.08mg/kg、或约0.05mg/kg至约0.07mg/kg。前述列举值的中间值与范围也意在成为本发明的部分,例如该RNAi试剂可以约0.015mg/kg至约0.45mg/kg的剂量给予受试者。

在一些实施例中,RNAi试剂,例如药物组合物中的RNAi试剂可以按约0.01mg/kg、0.0125mg/kg、0.015mg/kg、0.0175mg/kg、0.02mg/kg、0.0225mg/kg、0.025mg/kg、0.0275mg/kg、0.03mg/kg、0.0325mg/kg、0.035mg/kg、0.0375mg/kg、0.04mg/kg、0.0425mg/kg、0.045mg/kg、0.0475mg/kg、0.05mg/kg、0.0525mg/kg、0.055mg/kg、0.0575mg/kg、0.06mg/kg、0.0625mg/kg、0.065mg/kg、0.0675mg/kg、0.07mg/kg、0.0725mg/kg、0.075mg/kg、0.0775mg/kg、0.08mg/kg、0.0825mg/kg、0.085mg/kg、0.0875mg/kg、0.09mg/kg、0.0925mg/kg、0.095mg/kg、0.0975mg/kg、0.1mg/kg、0.125mg/kg、0.15mg/kg、0.175mg/kg、0.2mg/kg、0.225mg/kg、0.25mg/kg、0.275mg/kg、0.3mg/kg、0.325mg/kg、0.35mg/kg、0.375mg/kg、0.4mg/kg、0.425mg/kg、0.45mg/kg、0.475mg/kg或约0.5mg/kg的剂量给予。前述列举值的中间值与范围也意在成为本发明的部分。

药物组合物可以通过静脉内输注经过一段时间来给予,如经过5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20和21、22、23、24或约25分钟的周期。该给予可以例如在一个常规基础上(例如每周地、双周地(即,每两周))重复持续一个月、两个月、三个月、四个月或更久。在初始治疗方案后,可以基于更低频率给予治疗。例如在每周或双周给予持续三个月后,给予可以按每个月重复一次,持续六个月或一年或更长。

可以将该药物组合物一日给予一次,或者可以将该iRNA在一天内以适当的间隔给予两次、三次或更多次亚剂量,或者甚至可以通过控释配制品使用连续输注或递送而给予。在所述情况下,包含在每次亚剂量中的iRNA必须是相对应更小的,以便实现总每日剂量。也可以将剂量单位复配用于在几天内递送,例如使用在几天时间范围内提供持续的iRNA释放的常规持续释放配制品。持续释放配制品是本领域中熟知的并且对于在特定位点递送试剂是特别有用的,由此可以与本发明的试剂使用。在这一实施例中,该剂量单位包含相对应的多个每日剂量。

在其他实施例中,单次剂量的该药物组合物可以长久持续,从而后续剂量以不多于3、4或5天的间距或以不多于1、2、3、或4周的间距施用。在本发明的一些实施例中,每周给予一次单次剂量的本发明的药物组合物。在本发明的其他实施例中,每两月给予单次剂量的本发明的这些药物组合物。

本领域技术人员将理解,某些因素可以影响有效治疗受试者所要求的剂量和时间安排,这些因素包括但不限于疾病或障碍的严重性、先前的治疗、该受试者的总体健康和/或年龄以及其他存在的疾病。此外,用治疗有效剂量的组合物治疗受试者可以包括单次治疗或一系列治疗。如在此的其他地方所描述,使用常规方法或基于使用适当动物模型的体内测试,可以评估本发明涵盖的各个iRNA的有效剂量和体内半衰期。

取决于希望局部或全身性治疗并且取决于有待治疗的区域,可以将本发明的药物组合物按许多方式给予。给予可以是局部的(例如,通过透皮贴剂);肺的,例如通过吸入或吹入粉剂或气雾剂,包括通过喷雾器;气管内的;鼻内的;表皮的和透皮的;口服的或肠胃外的。肠胃外给予包括静脉内、皮下、腹膜内或肌肉内的注射或输注;皮下的,例如通过植入性器械的给予;或颅内的,例如通过实质内、鞘内或心室内的给予。

iRNA可以按这样的方式递送以靶向特定组织,如肝脏(例如肝脏的肝细胞)。

用于局部给予的药物组合物和配制品可以包括透皮贴剂、软膏、洗剂、乳膏、凝胶剂、滴剂、栓剂、喷雾剂、液体以及粉剂。常规的药物载体、水、粉末或油基、增稠剂等可以是必要的或希望的。包衣的安全套、手套等也可以是有用的。适合的局部配制品包括其中在本发明中体现的iRNA与局部用递送剂如脂质、脂质体、脂肪酸、脂肪酸酯、类固醇、螯合剂和表面活性剂混合的那些。合适的脂质与脂质体包括中性的(例如,二油酰基磷脂酰基DOPE乙醇胺、二肉豆蔻酰磷脂酰胆碱DMPC、二硬脂酰磷酯酰胆碱)、阴离子的(例如,二肉豆蔻酰磷脂酰甘油DMPG)以及阳离子的(例如,二油酰基四甲基氨基丙基DOTAP以及二油酰基磷脂酰乙醇胺DOTMA)。在本发明中体现的iRNA可以被包囊在脂质体内或可以与其形成复合物,具体地与阳离子脂质体形成复合物。可替代地,iRNA可以与脂质、具体地与阳离子脂质复合。合适的脂肪酸与酯包括但不限于花生四烯酸、油酸、花生酸、月桂酸、羊脂酸、羊蜡酸、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、甘油单油酸酯、甘油二月桂酸酯、1-单癸酸甘油酯、1-十二烷基氮杂环庚-2-酮、酰基肉毒碱、酰基胆碱、或C

A.包括膜性分子集合体的iRNA配制品

用于在本发明的组合物和方法中使用的iRNA可以被配制成用于在膜性分子集合体中递送例如脂质体或胶束。如在此所使用,术语“脂质体”是指由设置在至少一个双层(例如一个双层或多个双层)中的两亲性脂质构成的囊泡。脂质体包括单层的或多层的囊泡,其具有一个形成自亲脂材料的膜以及一个水性内部。水性部分包含该iRNA组合物。该亲脂性材料从典型地不包括iRNA组合物的水性外部(尽管在一些实例中,它可能包括)分离该水性内部。脂质体对于将活性成分转移以及递送至作用位点是有用的。因为脂质体膜与生物膜结构上类似,当脂质体被施用到一种组织时,该脂质体双层与细胞膜的双层融合。随着脂质体与细胞的融合进行,包含iRNA的内部水性内容物被递送到细胞中,其中该iRNA可以特异性结合到一种靶RNA并且可以介导iRNA。在一些情况下,这些脂质体还被特异地靶向成例如将该iRNA引导到特定细胞类型上。

包含iRNA试剂的脂质体可以通过多种方法来制备。在一个实例中,脂质体的脂质组分被溶解在洗涤剂中以使得用脂质组分形成胶束。例如该脂质组分可以是一种两亲性阳离子脂质或脂质共轭物。该洗涤剂可以具有高的临界胶束浓度并且可以是非离子的。示例性的洗涤剂包括胆酸盐、CHAPS、辛基葡糖苷、脱氧胆酸盐和月桂酰肌氨酸。然后将iRNA试剂制剂添加到包括该脂质组分的胶束中。该脂质上的阳离子基团与iRNA试剂相互作用并在iRNA试剂周围缩合以形成脂质体。缩合后,例如通过透析将该洗涤剂除去以得到iRNA试剂的脂质体制剂。

如果必要,可以在缩合反应过程中添加协助缩合的载体化合物,例如通过控制添加。例如,该载体化合物可以是除了核酸以外的一种聚合物(例如,精胺或亚精胺)。还可以调整pH以有利于缩合。

用于产生稳定的多核苷酸递送媒介物的方法(其结合了多核苷酸/阳离子脂质复合物作为该递送媒介物的结构组分)进一步描述在例如WO 96/37194中,其全部内容通过引用结合在此。脂质体形成还可以包括描述于以下文献中的示例性方法的一个或多个方面:费尔格纳(Felgner),P.L等人,美国国家科学院院刊8:7413-7417,1987;美国专利号4,897,355;美国专利号5,171,678;班厄姆(Bangham)等人,膜分子生物学(M.Mol.Biol.)23:238,1965;奥尔森(Olson)等人,生物化学与生物物理学报(Biochim.Biophys.Acta)557:9,1979;苏卡(Szoka)等人,美国国家科学院院刊75:4194,1978;梅休(Mayhew)等人生物化学与生物物理学报775:169,1984;金等人生物化学与生物物理学报728:339,1983;以及福永(Fukunaga)等人,内分泌学(Endocrinol.)115:757,1984。常用的用于制备用作递送媒介物的具有适当尺寸的脂质聚集体的技术包括超声处理和冻融加挤出(参见例如梅耶(Mayer)等人生物化学与生物物理学报858:161,1986)。当希望一致小(50nm至200nm)和相对均匀的聚集体时,可以使用微流化法(梅休等人,生物化学与生物物理学报775:169,1984)。这些方法容易地适用于将iRNA试剂制剂封装到脂质体中。

脂质体分成两大类。阳离子脂质体是带正电荷的脂质体,这些脂质体与带负电荷的核酸分子相互作用以形成一种稳定的复合物。该带正电荷的核酸/脂质体复合物结合至带负电荷的细胞表面并且内化在核内体中。由于核内体内的酸性pH,脂质体破裂,从而将它们的内含物释放到细胞质中(王等人,生物化学与生物物理研究通讯,1987,147,980-985)。

pH-敏感或带负电荷的脂质体包埋核酸而不与它复合。由于该核酸与该脂质是带类似的电荷,所以形成排斥而不是复合。然而,某种核酸包埋于这些脂质体的水性内部之内。pH-敏感脂质体已经用来将编码胸苷激酶基因的核酸递送至培养的细胞单层。在靶标细胞内检测到外源基因的表达(周(Zhou)等人,控释杂志(Journal of ControlledRelease),1992,19,269-274)。

脂质体组合物的一个主要类型包括除了天然来源的磷脂酰胆碱以外的磷脂。例如中性脂质体组合物可以从二肉豆蔻酰基磷脂酰胆碱(DMPC)或二棕榈酰基磷脂酰胆碱(DPPC)中形成。阴离子脂质体组合物通常可以形成自二肉豆蔻酰磷脂酰甘油,而阴离子融合脂质体主要形成自二油酰基磷脂酰乙醇胺(DOPE)。另一个类型的脂质体组合物从磷脂酰胆碱(PC),例如像大豆PC和蛋PC中形成。另一个类型从磷脂和/或磷脂酰胆碱和/或胆固醇的混合物中形成。

用于将脂质体体内和体外引入细胞中的其他方法的实例包括美国专利号5,283,185;美国专利号5,171,678;WO 94/00569;WO93/24640;WO 91/16024;费尔格纳,生物化学杂志269:2550,1994;纳贝尔(Nabel),美国国家科学院院刊90:11307,1993;纳贝尔,人类基因治疗3:649,1992;格申(Gershon),生物化学32:7143,1993;以及施特劳斯(Strauss)EMBO杂志11:417,1992。

还已经检验非离子型脂质体系统以确定它们在递送药物至皮肤中的用途,具体地包含非离子表面活性剂和胆固醇的系统。包括Novasome

脂质体还包括“立体化学稳定的”脂质体,这个术语如在此所使用的指包括一种或多种专门化脂质的脂质体,当并入脂质体中时这些脂质导致相对于缺少此类专门化脂质的脂质体而言的增加的循环寿命。立体化学稳定的脂质体的实例是以下那些:在其中该脂质体的形成囊泡的脂质部分中的一部分(A)包括一种或多种糖脂,例如单唾液酸神经节苷酯G

包含一种或多种糖脂的不同脂质体是本领域中已知的。帕帕哈都久珀罗斯(Papahadjopoulos)等人(纽约科学院年报(Ann.N.Y.Acad.Sci.),1987,507,64)报道了单唾液酸神经节苷酯G

在一个实施例中,使用阳离子脂质体。阳离子脂质体具有能够融合至细胞膜的优势。非阳离子脂质体尽管不能够一样有效地与质膜融合,但是可以被体内巨噬细胞摄取,并且可以用来将iRNA试剂递送到巨噬细胞中。

脂质体的其他优点包括;从天然磷脂获得的脂质体是生物相容的且生物可降解的;脂质体可以并入广泛类型的水溶性和脂溶性药物;脂质体可以在其内部区室中保护封装的iRNA试剂免受代谢和降解(洛索夫(Rosoff),“药物剂型(Pharmaceutical DosageForms)”,利伯曼(Lieberman)、列赫尔(Rieger)与斑克(Banker)(编著),1988,卷1,第245页)。在制备脂质体配制品方面的重要的考虑是脂质表面电荷、囊泡尺寸以及这些脂质体的水性体积。

可以使用一种带正电荷的合成阳离子脂质,N-[1-(2,3-二油烯基氧基)丙基]-N,N,N-三甲基氯化铵(DOTMA)以形成小的脂质体,其自发地与核酸相互作用形成脂质-核酸复合物,这些复合物能够与组织培养细胞的细胞膜的带负电荷的脂质融合,导致递送iRNA试剂(参见,例如费尔格纳P.L.等人,美国国家科学院院刊8:7413-7417,1987和美国专利号4,897,355,关于DOTMA以及其与DNA一起使用的说明)。

可以将一种DOTMA类似物、1,2-双(油酰氧基)-3-(三甲基氨)丙烷(DOTAP)与磷脂组合使用形成DNA络合囊泡。Lipofectin

其他报道的阳离子脂质化合物包括已共轭至多个部分的那些,包括例如已共轭至两种类型的脂质中的一种的羧基精胺,并且包括化合物如5-羧基精胺基甘氨酸二辛油酰基酰胺(“DOGS”)(Transfectam

另一种阳离子脂质共轭物包括用胆固醇(“DC-Chol”)对该脂质进行的衍生,其已被配制成脂质体与DOPE的组合(参见高(Gao),X和黄(Huang),L.,生物化学与生物物理学研究通讯179:280,1991)。通过将聚赖氨酸共轭至DOPE制成的脂质聚赖氨酸已被报道在血清存在下是有效于转染的(周(Zhou),X等人,生物化学和生物物理学报1065:8,1991)。对于某些细胞系,这些含有共轭阳离子脂质的脂质体据说显示出较低的毒性,并且比含DOTMA组合物提供更有效的转染。其他可商购的阳离子脂质产品包括DMRIE和DMRIE-HP(维考(Vical),拉霍亚(La Jolla),加利福尼亚州)和Lipofectamine(DOSPA)(生命科技公司(LifeTechnology,Inc.),盖瑟斯堡,马里兰州)。适合用于寡核苷酸的递送的其他阳离子脂质被描述于WO98/39359和WO 96/37194中。

脂质体配制品特别适用于局部给予,脂质体比其他配制品呈现若干优势。这些优势包括:减少的与所给予药物的高全身性吸收相关的副作用、在希望的靶标处所给予药物的增加的积累、以及将iRNA试剂给予进入皮肤的能力。在一些实施例中,脂质体用于将iRNA试剂递送到表皮细胞,并且也用以增强iRNA试剂向真皮组织(例如皮肤)的渗入。例如,可以局部应用这些脂质体。已经记录了配制为脂质体的药物至皮肤的局部递送(参见,例如温纳(Weiner)等人,药物靶向杂志(Journal of Drug Targeting),1992,卷2,405-410和杜普莱西斯(Plessis)等人,抗病毒研究(Antiviral Research),18,1992,259-265;曼尼诺(Mannino),R.J.和福尔德-福格利特(Fould-Fogerite),S.,生物技术(Biotechniques)6:682-690,1988;伊塔尼(Itani),T.等人,基因56:267-276.1987;尼古劳(Nicolau),C.等人,酶学方法(Meth.Enz.)149:157-176,1987;施特劳宾格(Straubinger),R.M.和帕帕哈都久珀罗斯D.,酶学方法101:512-527,1983;王C.Y.和黄L.,美国国家科学院院刊84:7851-7855,1987)。

还已经检验非离子型脂质体系统以确定它们在递送药物至皮肤中的用途,具体地包含非离子表面活性剂和胆固醇的系统。包括Novasome I(二月桂酸甘油酯/胆固醇/聚氧乙烯-10-硬脂酰醚)以及Novasome II(二硬脂酸甘油酯/胆固醇/聚氧乙烯-10-硬脂酰醚)的非离子型脂质体配制品用于将一种药物递送入小鼠皮肤的真皮。具有iRNA试剂的这类配制品适用于治疗皮肤病学失调。

包括iRNA的脂质体可以被制成高度可变形的。这样的变形可以使脂质体能够通过比该脂质体的平均半径小的孔渗透。例如传递体是一种可变形的脂质体的类型。传递体可以通过将表面边缘活化剂(通常为表面活性剂)添加到一种标准的脂质体组合物中制成。包含iRNA试剂的传递体可以例如通过皮下地感染被递送以将iRNA试剂递送到皮肤中的角质形成细胞中。为了跨过完整的哺乳动物皮肤,脂质囊泡必须在适合的透皮梯度的影响下穿过一系列的细孔,每一孔具有小于50nm的直径。此外,由于这些脂质特性,这些传递体可以是自优化的(适应例如皮肤中的孔的形状)、自我修复性的,并且可频繁地到达它们的靶标而不片段化,并且通常是自我负载性的。

属于本发明的其他配制品描述在2008年1月2日提交的美国临时申请序列号61/018,616;2008年1月2日提交的美国临时申请序列号61/018,611;2008年3月26日提交的美国临时申请序列号61/039,748;2008年4月22日提交的美国临时申请序列号61/047,087以及2008年5月8日提交的美国临时申请序列号61/051,528。2007年10月3日提交的PCT申请号PCT/US 2007/080331还描述了属于本发明的配制品。

传递体是又另一种类型的脂质体,并且是高度可变形的脂质聚集体,它们是用于药物递送媒介物的引人注目的候选物。传递体可以被描述为脂滴,其是高度可变形从而它们能够容易地穿过比该脂滴更小的孔。传递体能适应在其中使用它们的环境,例如它们是自优化性的(能适应皮肤中孔的形状)、自我修复性的、频繁地到达它们的靶标而不片段化,并且通常是自我负载性的。为了制备传递体,可能的是将表面边缘激活剂(通常是表面活性剂)添加至一种标准的脂质体组合物。传递体已经被用于将血清白蛋白递送至皮肤。传递体介导的血清白蛋白的递送已经显示与包含血清白蛋白的溶液的皮下注射同样有效。

表面活性剂在配制品如乳剂(包括微乳剂)和脂质体中有广泛应用。对许多不同类型的表面活性剂(天然的和合成的两者)的特性进行分类并评级的最普通的方法是通过使用亲水/亲油平衡值(HLB)。亲水基团(又称为“头部”)的性质为对用于配制品中的不同表面活性剂进行归类提供了最有用的手段(列赫尔,“药物剂型”,马塞尔德克公司(MarcelDekker,Inc.),纽约州纽约(New York,N.Y.),1988,第285页)。

如果该表面活性剂分子没有离子化,它被分类为一种非离子型表面活性剂。发现非离子型表面活性剂在药物与化妆品产品方面有广泛应用并且能够在广泛的pH范围使用。总体上,取决于它们的结构,它们的HLB值范围为从2至大约18。非离子型表面活性剂包括非离子型酯,例如乙二醇酯、丙二醇酯、甘油酯、聚甘油酯、脱水山梨糖醇酯、蔗糖酯以及乙氧基化酯。非离子型烷醇酰胺以及醚(例如脂肪醇乙氧基化物、丙氧基化醇、以及乙氧基化/丙氧基化嵌段聚合物)也包括在这一类别中。聚氧乙烯表面活性剂是该非离子型表面活性剂类别中最常用的成员。

如果该表面活性剂分子在其溶解或分散在水中时携带负电荷,则该表面活性剂被分类为阴离子型。阴离子型表面活性剂包括羧化物(例如皂)、酰基乳酸酯、氨基酸的酰基酰胺、硫酸酯(例如烷基硫酸酯以及乙氧基化的烷基硫酸酯)、磺酸酯(例如烷基苯磺酸酯、酰基羟乙基磺酸酯、酰基牛磺酸酯以及磺基琥珀酸酯)、以及磷酸酯。该阴离子型表面活性剂类别中最重要的成员是烷基硫酸酯和皂类。

如果该表面活性剂分子在其溶解或分散在水中时携带正电荷,则该表面活性剂被分类为阳离子型。阳离子型表面活性剂包括季铵盐以及乙氧基化胺。这些季铵盐是这一类别的最常用的成员。

如果该表面活性剂分子具有携带正电荷或负电荷的能力,该表面活性剂被分类为两性型。两性型表面活性剂包括丙烯酸衍生物、取代的烷基酰胺、N-烷基甜菜碱以及磷脂。

已经综述了表面活性剂在药品、配制品和在乳剂中的用途(列赫尔,“药物剂型”,马塞尔德克公司,纽约州纽约,1988,第285页)。

用于在本发明的方法中使用的iRNA也可提供为胶束配制品。“胶束”在此处定义为一种特定类型的分子集合体,其中两亲性分子排列在一个球形结构中,使得这些分子的所有疏水部分向内定向,而使亲水部分与周围的水相接触。如果环境是疏水性的,则存在相反的排列。

适合用于通过透皮的膜递送的混合胶束配制品可以通过混合该siRNA组合物的水溶液、碱金属C

在一个方法中,制备一种第一胶束组合物,其包含该siRNA组合物以及至少该碱金属烷基硫酸盐。然后将该第一胶束组合物与至少三种胶束形成化合物混合,以形成混合胶束组合物。在另一种方法中,该胶束组合物是通过将该siRNA组合物、碱金属烷基硫酸盐和至少一种胶束形成的化合物混合,然后添加剩余的胶束形成化合物(剧烈混合下)来制备。

可将苯酚和/或间甲酚添加到该混合胶束组合物中以稳定该配制品并防止细菌生长。可替代地,可随着胶束形成成分一起添加苯酚和/或间甲酚。也可以在该混合胶束组合物形成之后加入等渗剂,如甘油。

对于作为喷雾的胶束配制品的递送,该配制品可被装入气溶剂分配器中并将该分配器用推进剂填充。在该分配器中推进剂(其在压力下)处于液体形式。对各成分的比例进行调整,以便使该水相和推进剂相成为一体,即存在一个相。如果有两个相,有必要在分配这些内容物的部分(例如通过计量阀)之前摇动该分配器。药物试剂的分配量是从计量阀中以细雾推进。

推进剂可以包括含氢氯氟烃、含氢氟烃、二甲醚和二乙醚。在某些实施例中,也可以使用HFA 134a(1,1,1,2四氟乙烷)。

这些必需成分的特定浓度可以通过相对简单的实验来确定。对于经口腔的吸收,通常希望的是增加例如至少两倍或三倍的对于通过经胃肠道注射或给予的剂量。

B.脂质颗粒

iRNA,例如本发明的dsRNA可以被完全封装在脂质配制品(例如LNP或其他核酸-脂质颗粒)中。

如在此所使用,术语“LNP”是指一种稳定的核酸-脂质颗粒。LNP典型地含有阳离子脂质、非阳离子脂质以及防止颗粒聚集的脂质(例如,PEG-脂质共轭物)。LNP对于合成应用是极其有用的,因为它们展示出在静脉内(i.v.)注射之后延长的循环寿命并且在远端位点积累(例如在与给予位点物理分开的位点)。LNP包括“pSPLP”,pSPLP包括一种包囊化的缩合剂-核酸复合体,如在PCT公开号WO 00/03683中所提出的。本发明的颗粒典型地具有约50nm至约150nm,更典型地是约60nm至约130nm,更典型地是约70nm至约110nm,最典型地是约70nm至约90nm的平均直径,并且基本上是无毒的。另外,当出现在本发明的核酸-脂质颗粒中时,这些核酸在水溶液中抵抗核酸酶的降解。核酸-脂质颗粒及其制备方法在例如美国专利号5,976,567;5,981,501;6,534,484;6,586,410;6,815,432;美国公开号2010/0324120以及PCT公开号WO 96/40964中披露。

在一个实施例中,脂质与药物的比率(质量/质量比率)(例如脂质与dsRNA的比率)将处于从约1:1至约50:1,从约1:1至约25:1,从约3:1至约15:1,从约4:1至约10:1,从约5:1至约9:1,或约6:1至约9:1的范围内。以上列举的范围的范围中间值也被想到成为本发明的部分。

阳离子脂质可以是例如N,N-二油烯基-N,N-二甲基氯化铵(DODAC)、N,N-二硬脂酰-N,N-二甲基溴化铵(DDAB)、N-(I-(2,3-二油酰基氧基)丙基)-N,N,N-三甲基氯化铵(DOTAP)、N-(I-(2,3-二油烯基氧基)丙基)-N,N,N-三甲基氯化铵(DOTMA)、N,N-二甲基-2,3-二油烯基氧基)丙胺(DODMA)、1,2-二亚油基氧基(DiLinoleyloxy)-N,N-二甲基氨基丙烷(DLinDMA)、1,2-二亚麻基氧基(Dilinolenyloxy)-N,N-二甲基氨基丙烷(DLenDMA)、1,2-二亚油基氨基甲酰氧基-3-二甲基氨基丙烷(DLin-C-DAP)、1,2-二亚油基氧基-3-(二甲基氨基)乙酰氧基丙烷(DLin-DAC)、1,2-二亚油基氧基-3-吗啉代丙烷(DLin-MA)、1,2-二亚油基酰基-3-二甲基氨基丙烷(DLinDAP)、1,2-二亚油基硫代-3-二甲基氨基丙烷(DLin-S-DMA)、1-亚油基酰基-2-亚油基氧基-3-二甲基氨基丙烷(DLin-2-DMAP)、1,2-二亚油基氧基-3-三甲基氨基丙烷氯化盐(DLin-TMA.Cl)、1,2-二亚油基酰基-3-三甲基氨基丙烷氯化盐(DLin-TAP.Cl)、1,2-二亚油基氧基-3-(N-甲基哌嗪)丙烷(DLin-MPZ)、或3-(N,N-二亚油基氨基)-1,2-丙二醇(DLinAP)、3-(N,N-二油烯基氨基)-1,2-丙二醇(DOAP)、1,2-二亚油基氧代-3-(2-N,N-二甲基氨基)乙氧基丙烷(DLin-EG-DMA)、1,2-二亚麻基氧基-N,N-二甲基氨基丙烷(DLinDMA)、2,2-二亚油基-4-二甲基氨基甲基-[1,3]-二氧戊环(DLin-K-DMA)或其类似物、(3aR,5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八-9,12-二烯)四氢-3aH-环戊[d][1,3]二氧杂环戊烯-5-胺(ALN100)、(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四-19-基4-(二甲基氨基)丁酸酯(MC3)、1,1’-(2-(4-(2-((2-(双(2-羟基月桂基)氨基)乙基)(2-羟基月桂基)氨基)乙基)哌嗪-1-基)乙基脲二基)二十二烷-2-醇(Tech G1),或其混合物。该阳离子脂质可以占该颗粒中存在的总脂质的从大约20mol%至大约50mol%或大约40mol%。

在另一个实施例中,化合物2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环可以用来制备脂质-siRNA纳米颗粒。2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环的合成描述于2008年10月23日提交的美国临时专利申请号61/107,998中,将其通过引用结合于此。

在一个实施例中,该脂质-siRNA颗粒包括40%2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环:10%DSPC:40%胆固醇:10%PEG-C-DOMG(摩尔百分数),颗粒尺寸在63.0±20nm,并且具有0.027siRNA/脂质比率。

该可电离的/非阳离子脂质可以是一种阴离子脂质或一种中性脂质,包括但不限于:二硬脂酰磷脂酰胆碱(DSPC)、二油酰基磷脂酰胆碱(DOPC)、二棕榈酰磷脂酰胆碱(DPPC)、二油酰基磷脂酰甘油(DOPG)、二棕榈酰磷脂酰甘油(DPPG)、二油酰基-磷脂酰乙醇胺(DOPE)、棕榈酰油酰基磷脂酰胆碱(POPC)、棕榈酰油酰基磷脂酰乙醇胺(POPE)、二油酰基-磷脂酰乙醇胺4-(N-马来酰亚胺甲基)-环己烷-l-羧酸酯(DOPE-mal)、二棕榈酰磷脂酰基乙醇胺(DPPE)、二肉豆蔻酰磷酸乙醇胺(DMPE)、二硬脂酰-磷脂酰-乙醇胺(DSPE)、16-O-一甲基PE、16-O-二甲基PE、18-1-反式PE、1-硬脂酰-2-油酰基-磷脂酰乙醇胺(SOPE)、胆固醇,或其混合物。非阳离子脂质(如果包括胆固醇的话)可以占该颗粒中存在的总脂质的从约5mol%至约90mol%,约10mol%,或约58mol%。

抑制颗粒聚集的共轭脂质可以是例如一种聚乙二醇(PEG)-脂质,其包括但不限于PEG-二酰甘油(DAG)、PEG-二烷氧基丙基(DAA)、PEG-磷脂、PEG-神经酰胺(Cer),或其混合物。PEG-DAA共轭物可以是,例如PEG-二月桂基氧丙基(Ci

在一些实施例中,核酸-脂质颗粒进一步包括胆固醇,该胆固醇例如占颗粒中存在的总脂质的约10mol%至约60mol%或约48mol%。

在一个实施例中,利匹哆异德(lipidoid)ND98.4HCl(MW 1487)(参见2008年3月26日提交的美国专利申请号12/056,230,通过引用结合在此)、胆固醇(西格玛-奥德里奇公司(Sigma-Aldrich))以及PEG-神经酰胺C16(阿文蒂极性脂质公司(Avanti Polar Lipids))可以用来制备脂质-dsRNA纳米颗粒(即,LNP01颗粒)。可以如下制备每种组分在乙醇中的母液:ND98,133mg/ml;胆固醇,25mg/ml;PEG-神经酰胺C16,100mg/ml。然后可以例如42:48:10摩尔比组合ND98、胆固醇和PEG-神经酰胺C16储备溶液。合并的脂质溶液可以与(例如乙酸钠(pH 5)中的)水性dsRNA混合,这样使得最终乙醇浓度是约35%-45%并且最终乙酸钠浓度是约100mM-300mM。一旦混合,脂质-dsRNA纳米颗粒典型地自发形成。取决于所需的粒度分布,可以使用例如热桶挤出机,如Lipex挤出机(北部脂质公司(Northern Lipids,Inc)),经聚碳酸酯膜(例如100nm截值)挤出所产生的纳米颗粒混合物。在一些情况下,可以省略挤出步骤。可以通过例如透析或切线流过滤实现乙醇去除和同时交换缓冲液。缓冲液可以与例如在约pH 7,例如约pH 6.9、约pH 7.0、约pH 7.1、约pH 7.2、约pH 7.3或约pH 7.4下的磷酸盐缓冲的盐水(PBS)交换。

LNP01配制品例如在国际申请公开号WO 2008/042973中描述,将其通过引用结合在此。

另外的示例性脂质-dsRNA配制品被描述于表1中。

表1.示例性脂质-dsRNA配制品。

DSPC:二硬脂酰磷脂酰胆碱

DPPC:二棕榈酰磷脂酰胆碱

PEG-DMG:PEG-双二肉豆蔻酰甘油(C14-PEG,或PEG-C14)(平均分子量为2000的PEG)

PEG-DSG:PEG-二苯乙烯基甘油(C18-PEG,或PEG-C18)(平均分子量为2000的PEG)

PEG-cDMA:PEG-氨甲酰基-1,2-二肉豆蔻基氧丙胺(平均分子量为2000的PEG)

包含SNALP(l,2-二亚麻基氧基-N,N-二甲基氨基丙烷(DLinDMA))的配制品描述于2009年4与15日提交的国际公开号WO 2009/127060中,通过引用将其结合于此。

包括XTC的配制品描述于,例如,以下各项中:2009年1月29日提交的美国临时序列号61/148,366;2009年3月2日提交的美国临时序列号61/156,851;2009年6月10日提交的美国临时序列号;2009年7月24日提交的美国临时序列号61/228,373;2009年9月3日提交的美国临时序列号61/239,686以及2010年1月29日提交的国际申请号PCT/US 2010/022614,将其通过引用特此结合。

包含MC3的配制品描述于,例如2010年6月10日提交的美国公开号2010/0324120,其全部内容通过引用特此结合。

包含ALNY-100的配制品描述于例如以下中:例如,2009年11月10日提交的国际专利申请号PCT/US 09/63933,将其通过引用特此结合。

包含C12-200的配制品描述于例如以下各项中:2009年5月5日提交的美国临时序列号61/175,770以及2010年5月5日提交的国际申请号PCT/US 10/33777,将其通过引用特此结合。

用于口服给予的组合物和配制品包括粉剂或颗粒剂、微粒剂、纳米颗粒剂、在水或非水性介质中的混悬液或溶液、胶囊、凝胶胶囊、囊剂、片剂或迷你片剂。增稠剂、调味剂、稀释剂、乳化剂、分散助剂或结合剂可以是希望的。在一些实施例中,口服配制品是以下那些:在其中本发明所表征的dsRNA与一种或多种渗透增强剂表面活性剂以及螯合剂结合地给予。适合的表面活性剂包括脂肪酸和/或其酯或盐、胆汁酸和/或其盐。合适的胆酸/盐包括鹅脱氧胆酸(CDCA)以及乌索脱氧胆酸(UDCA)、胆酸、脱氢胆酸、脱氧胆酸、葡糖胆酸、甘油胆酸、甘油脱氧胆酸、牛磺胆酸、牛磺脱氧胆酸、牛磺-24,25-二氢-梭链孢酸钠以及甘油二氢梭链孢酸钠。合适的脂肪酸包括花生四烯酸、十一烷酸、油酸、月桂酸、羊脂酸、羊蜡酸、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、甘油单油酸酯、甘油二月桂酸酯、1-单癸酸甘油酯、1-十二烷基氮杂环庚-2-酮、一种酰基肉毒碱、一种酰基胆碱、或一种甘油一酯、甘油二酯或其药学上可接受的盐(例如钠盐)。在一些实施例中,渗透增强剂的组合(例如脂肪酸/盐)是与胆汁酸/盐组合使用。一个示例性的组合是月桂酸、羊蜡酸以及UDCA的钠盐。其他渗透促强剂包括聚氧乙烯-9-月桂基醚、聚氧乙烯-20-鲸蜡醚。本发明表征的dsRNA可以口服递送,以包括喷雾干燥颗粒的颗粒剂的形式递送,或者复合成微颗粒或纳米颗粒。DsRNA复合剂包括聚氨基酸;聚亚胺;聚丙烯酸酯;聚丙烯酸烷基酯、聚氧乙烷(polyoxethane)、聚氰基丙烯酸烷基酯;阳离子化明胶、白蛋白、淀粉、丙烯酸酯、聚乙二醇(PEG)和淀粉;聚氰基丙烯酸烷基酯;DEAE衍生化聚亚胺、短梗霉多糖、纤维素和淀粉。合适的复合剂包括壳聚糖、N-三甲基壳聚糖、聚-L-赖氨酸、聚组氨酸、聚鸟氨酸、聚精胺、鱼精蛋白、聚乙烯吡啶、聚硫代二乙基氨基甲基乙烯P(TDAE)、聚氨基苯乙烯(例如p-氨基)、聚(甲基氰基丙烯酸酯)、聚(乙基氰基丙烯酸酯)、聚(丁基氰基丙烯酸酯)、聚(异丁基氰基丙烯酸酯)、聚(异己基氰基丙烯酸酯)、DEAE-异丁烯酸酯、DEAE-己基丙烯酸酯、DEAE-丙烯酰胺、DEAE-白蛋白与DEAE-葡聚糖、聚甲基丙烯酸酯、聚己基丙烯酸酯、聚(D,L-乳酸)、聚(DL-乳酸-共-乙醇酸(PLGA)、藻朊酸盐、以及聚乙二醇(PEG)。dsRNA的口服配制品及其制备在美国专利6,887,906、美国公开号20030027780以及美国专利号6,747,014中详述,这些文献的每一个通过引用结合在此。

用于肠胃外、实质内(进入脑)、鞘内、心室内或肝内给药的组合物和配制品可以包括无菌水溶液,其也可以包含缓冲液、稀释剂及其他适当的添加剂,例如但不限于:渗透增强剂、载体化合物及其他药学上可接受的载体或赋形剂。

本发明的药物组合物包括但不限于溶液、乳剂以及含脂质体配制品。这些组合物可以产生自多种组分,这些组分包括但不限于预成形的液体、自乳化固体以及自乳化半固体。特别优选的是当治疗肝脏障碍(例如肝癌)时靶向肝脏的配制品。

本发明的药物配制品(可以方便地以单位剂型存在)可以根据医药工业内熟知的常规技术来制备。此类技术包括以下这样的步骤:将这些活性成分与该(这些)药物载体或赋形剂进行联合。总体而言,这些配制品是通过以下步骤来制备:使这些活性成分与液体载体或精细分散的固体载体或它们两者均匀地且精细地联合,并且如果需要,进而将产品成形。

本发明的这些组合物可以被配制成任何许多可能的剂型,如但不限于片剂、胶囊、凝胶胶囊、液体糖浆剂、软凝胶、栓剂以及灌肠剂。本发明的这些组合物还可以被配制为在水性、非水性或混合性介质中的混悬液。水性悬浮液可以进一步包含增加该悬浮液的粘度的物质,这样的物质包括例如羧甲基纤维素钠、山梨醇和/或葡聚糖。该混悬液还可以含有稳定剂。

C.另外的配制品

i.乳剂

可以将本发明的组合物制备和配制为乳剂。乳剂典型地是一种液体以直径通常超过0.1μm的液滴形式分散于另一种中的多相体系(参见,例如安赛尔(Ansel)的药物剂型与药物递送系统(Pharmaceutical Dosage Forms and Drug Delivery Systems),艾伦LV.、波波维奇(Popovich)NG.以及安赛尔HC.,2004,利平科特威廉姆斯&威尔金斯(LippincottWilliams&Wilkins)(第8版),纽约州纽约;艾迪升,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第199页;洛索夫,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第245页;布洛克,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第2卷,第335页;希古契(Higuchi),雷明顿氏药物科学(Remington’s Pharmaceutical Sciences),麦克出版公司(Mack Publishing Co.),伊斯顿(Easton),Pa.,1985,第301页)。乳剂经常是包含密切混合且彼此分散的两个不混溶的液相的双相体系。通常,乳液可以为油包水(w/o)或水包油(o/w)两种。当水相作为微小液滴细碎并分散到本体油相中时,所产生的组合物被称为油包水(w/o)乳剂。可替代地,当油相作为微小液滴细碎并分散到本体水相中时,所产生的组合物被称为水包油(o/w)乳剂。除了分散相和活性药物外,乳剂还可以含其他组分,活性药物可以作为在水相、油相中的溶液,或者其自身作为独立相。如果需要,也可以存在药物赋形剂如乳化剂、稳定剂、染料和抗氧化剂。药物乳剂还可以为包括多于两种相的多重乳剂,例如像油包水包油(o/w/o)和水包油包水(w/o/w)乳剂的情况。此类复合配制品通常提供某些简单的二元乳剂所不具有的优势。当多重乳剂中的o/w乳剂的各油滴还包有小水滴时,该多重乳剂形成w/o/w乳剂。同样地,在油连续相中稳定化的水滴中封装油滴的系统提供o/w/o乳液。

乳剂具有较小或没有热力学稳定性的特征。通常,乳剂的分散相或不连续相很好地分散在外相或连续相中并通过乳化剂或配制品的粘性保持这种形式。在乳液状软膏基质或膏剂的情况下,乳液的任一相可以为半固体或固体。其他稳定乳液的方式需要使用乳化剂,这些乳化剂可以合并到乳液的任一相中。乳化剂可以被广泛地分成四类:合成表面活性剂、天然存在的乳化剂、吸收基质以及精细分散的固体(参见例如,安塞尔的药物剂型和药物递送系统,艾伦LV.、波波维奇NG.以及安塞尔HC,2004,利平科特威廉姆斯&威尔金斯(第8版),纽约州纽约;艾迪升,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第199页)。

合成表面活性剂,也称作表面活性试剂,已经发现在乳剂的配制中广泛应用并且已经在文献中综述(参见,例如安赛尔的药物剂型与药物传递系统,艾伦LV.、波波维奇NG.以及安赛尔HC.,2004,利平科特威廉姆斯&威尔金斯(第8版),纽约州纽约;列赫尔,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第285页;艾迪升,药物剂型,利伯曼、列赫尔和班克(编著),马塞尔德克公司,纽约州纽约,1988,第1卷,第199页;表面活性剂典型地是两亲的,并且包含亲水部分和疏水部分。表面活性剂的亲水和疏水性的比率被称为亲水/亲油平衡值(HLB),并且它是配制品制备中分类和选择表面活性剂的有价值的工具。表面活性剂可以基于亲水基团的性质:非离子、阴离子、阳离子和两亲分成不同类别(参见例如,安塞尔的药物剂型和药物递送系统,艾伦LV.、波波维奇NG.以及安塞尔HC,2004,利平科特威廉姆斯&威尔金斯(第8版),纽约州纽约;列赫尔,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第285页)。

乳剂配制品中使用的天然存在的乳化剂包括羊毛脂、蜂蜡、磷脂、卵磷脂和阿拉伯胶。吸收基质具有亲水特性,所以它们能够吸收水以形成w/o乳剂并仍然保持它们的半固体稠度,如无水羊毛脂和亲水凡士林。精细分散的固体也已经被用做优良的乳化剂,尤其是与表面活性剂组合和在粘性制剂中使用。这些包括极性无机固体,如重金属氢氧化物、非溶胀粘土如膨润土、凹凸棒土、锂蒙脱石,高岭土、蒙脱土、胶状硅酸铝和胶状镁硅酸铝、颜料和非极性固体如碳或甘油基三硬脂酸酯。

在乳液配制品中还包括多种非乳化材料,并且它们对乳液的特性有帮助。这些包括脂肪、油、蜡、脂肪酸、脂肪醇、脂肪酯、湿润剂、亲水胶体、防腐剂和抗氧化剂(布洛克,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第335页;艾迪升,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第199页)。

亲水胶体或水状胶体包括天然存在的树胶和合成的聚合物如多糖(如阿拉伯树胶、琼脂、藻酸、角叉菜聚糖、瓜耳胶、刺梧桐树胶和皇蓍胶),纤维素衍生物(如羧甲基纤维素和羧丙基纤维素)和合成的聚合物(如卡波姆胶、纤维素醚和羰基乙烯基聚合物)。这些物质在水中分散或溶胀形成胶状溶液,这些胶状溶液通过在分散相液滴的周围形成强的界面膜并通过增强外相的粘度来稳定乳剂。

由于乳剂通常包含一些可以容易地支持微生物生长的成份如碳水化合物、蛋白、固醇和磷脂,所以这些配制品通常含有防腐剂。乳剂配制品中通常使用的防腐剂包括甲基对羟基苯甲酸酯、丙基对羟基苯甲酸酯、季铵盐、苯扎氯铵、对羟基苯甲酸酯和硼酸。通常也将抗氧剂加入到乳剂配制品中,以预防配制品的变质。所用的抗氧化剂可以是自由基清除剂,如生育酚,没食子酸烷基酯、丁化羟基茴香醚、丁化羟基甲苯,或还原剂如抗坏血酸和焦亚硫酸钠,和抗氧化剂增效剂如柠檬酸、酒石酸和卵磷脂。

经由皮肤途径、口途径和肠胃外途径使用乳剂配制品和制造它们的方法已经在文献中综述(参见,例如安赛尔的药物剂型与药物传递系统,艾伦LV.、波波维奇NG.以及安赛尔HC.,2004,利平科特威廉姆斯&威尔金斯(第8版),纽约州纽约;艾迪升,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第199页)。由于易于配制以及从吸收和生物利用度观点来看的有效性,用于口服递送的乳剂配制品已得到非常广泛地使用(参见,例如安赛尔的药物剂型与药物传递系统,艾伦LV.、波波维奇NG.以及安赛尔HC.,2004,利平科特威廉姆斯&威尔金斯(第8版),纽约州纽约;洛索夫,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第245页;艾迪升,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第199页)。基于矿物油的缓泻药、油溶性维生素和高脂肪营养制剂属于经常作为o/w乳剂口服给予的物质。

ii.微乳剂

在本发明的一个实施例中,将iRNA和核酸的组合物配制为微乳剂。可以将微乳剂定义为水、油和两亲分子的体系,所述体系是光学各向同性和热动力学稳定的单一液态溶液(参见例如,安塞尔的药物剂型和药物递送系统,艾伦LV.、波波维奇NG.以及安塞尔HC,2004,利平科特威廉姆斯&威尔金斯(第8版),纽约州纽约;洛索夫,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第245页)。典型地,微乳液是通过如下方法制备的系统:首先将油分散到表面活性剂水溶液中,然后加入足量的通常为中等链长度的醇的第四组分来形成透明系统。因此,微乳剂也被描述成由表面活性分子的界面膜稳定化的两种不能混合的液体的热力学稳定的各向同性的澄清分散系(朗(Leung)与纱(Shah),在:药物的受控释放:聚合物和聚集体系统(Controlled Release of Drugs:Polymers and Aggregate Systems),洛索夫M.编著,1989,VCH出版公司,纽约,第185-215页)。通常微乳剂通过包括油、水、表面活性剂、助表面活性剂和电解质的三至五种组分的组合来制备。微乳剂是为油包水(w/o)还是水包油(o/w)类型取决于所使用的油和表面活性剂的特性以及表面活性剂分子的极性头部和羟基尾的结构和几何包装(斯科特(Schott),雷明顿氏药物科学,麦克出版公司,伊斯顿,Pa.,1985,第271页)。

已经广泛研究了利用相图的现象学方法并且该方法已经产生了为本领域普通技术人员所知的如何配制微乳剂的广泛知识(参见例如,安塞尔的药物剂型和药物递送系统,艾伦LV.、波波维奇NG.以及安塞尔HC.,2004,利平科特威廉姆斯&威尔金斯(第8版),纽约州纽约;洛索夫,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第245页;布洛克,药物剂型,利伯曼、列赫尔和班克(编著),1988,马塞尔德克公司,纽约州纽约,第1卷,第335页)。与常规乳剂相比,微乳剂提供的优点是能将非水溶性药物溶解到自发形成的热力学稳定的液滴的配制品中。

在微乳剂的制备中使用的表面活性剂包括但不限于单独的或与助表面活性剂组合使用的离子表面活性剂、非离子表面活性剂、Brij96、聚氧乙烯油基醚、聚脂肪酸甘油酯、单月桂酸四甘油酯(ML310)、单油酸四甘油酯(MO310)、单油酸六甘油酯(PO310)、五油酸六甘油酯(PO500)、单癸酸十甘油酯(MCA750)、单油酸十甘油酯(MO750)、一又二分之一油酸十甘油酯(SO750)(decaglycerol sequioleate)、十油酸十甘油酯(DAO750)。该辅助表面活性剂通常是短链醇如乙醇、1-丙醇和1-丁醇,作用是通过渗透到表面活性剂膜中并由此在表面活性剂分子间产生空余空间来产生无序膜从而提高界面流动性。然而,微乳液可以不使用辅助表面活性剂来制备,并且无醇的自乳化微乳液系统是本领域中已知的。水相可以典型地是,但不限于水、药物的水溶液、甘油、PEG300、PEG400、聚甘油、丙二醇和乙二醇的衍生物。油相可以包括但不限于如多种材料,例如Captex 300、Captex 355、Capmul MCM、脂肪酸酯,中等链(C8-C12)的单、二和三甘油三酯,聚氧乙基化的甘油脂肪酸酯、脂肪醇,聚乙二醇化的甘油酯(polyglycolized glyceride),饱和的聚乙二醇化的C8-C10甘油酯、植物油和硅油。

从药物溶解和增强的药物吸收方面看,微乳剂是特别令人感兴趣的。已提议基于脂质的微乳剂(o/w和w/o二者)增强药物(包括肽)的口服生物利用度(参见例如美国专利号6,191,105;7,063,860;7,070,802;7,157,099;康斯坦丁尼德斯(Constantinides)等人,药学研究(Pharmaceutical Research),1994,11,1385-1390;瑞茨尔(Ritschel),实验与临床药理学方法与成果(Meth.Find.Exp.Clin.Pharmacol.)1993,13,205)。微乳剂提供以下优点:改善药物溶解、保护药物免遭酶水解、可能因表面活性剂引起的膜流动性和通透性改变而增强药物吸收、易于制备、比固体剂型易于口服施用、临床效力改善和毒性减少(见例如美国专利号6,191,105;7,063,860;7,070,802;7,157,099;康斯坦丁尼德斯等人,药学研究,1994,11,1385;霍(Ho)等人,药学科学杂志(J.Pharm.Sci.),1996,85,138-143)。通常,当微乳剂的组分在环境温度下混合在一起时,它们可以自发形成微乳剂。当配制热不稳定的药物、肽或iRNA时,这可以是特别有利的。在化妆品和药物应用领域,微乳剂在活性组分的经皮递送中也是有效的。预期本发明的微乳剂组合物和配制品将促进iRNA和核酸从胃肠道的全身性吸收增加以及改善iRNA和核酸的局部细胞摄取。

本发明的微乳剂还可以含有另外的组分和添加剂,如脱水山梨糖醇单硬脂酸酯(Grill3)、Labrasol、以及改善配制品特性并增强本发明的iRNA和核酸吸收的渗透增强剂。本发明的微乳剂中使用的渗透增强剂可以分成归于五大类中的一种:表面活性剂、脂肪酸、胆汁盐、螯合剂和非螯合的非表面活性剂(李(Lee)等人,治疗性药物载体系统锐评(Critical Reviews in Therapeutic Drug Carrier Systems),1991,第92页)。这些类别中的每一个已经在以上进行了讨论。

iii.微颗粒

本发明的iRNA试剂可以并入颗粒,例如微颗粒。微颗粒可以通过喷雾干燥来产生,但也可以通过其他方法包括冷冻干燥、蒸发、流化床干燥、真空干燥或这些技术的组合来产生。

iv.渗透增强剂

在一个实施例中,本发明采用了不同渗透增强剂来实现向动物皮肤高效递送核酸,具体地iRNA。大多数药物以离子化形式和非离子化形式两者存在于溶液中。然而,通常只有脂溶的或亲脂的药物易于穿过细胞膜。已经发现,如果用渗透增强剂处理有待穿过的膜,甚至连非亲脂药物也可以穿过细胞膜。除了帮助非亲脂药物扩散穿过细胞膜以外,渗透增强剂还增强亲脂药物的渗透性。

渗透增强剂可以被分成属于五个广泛分类中的一个,即表面活性剂、脂肪酸、胆汁盐、螯合剂和非螯合的非表面活性剂(参见例如,马尔姆斯滕(Malmsten)M.药物递送中的表面活性剂和聚合物(Surfactants and polymers in drug delivery),健康传播杂志(Informa Health Care),纽约州纽约,2002;李等人,治疗性药物载体系统锐评,1991,第92页)。以下更详细地描述了以上提及的渗透增强剂的类别中的每一个。

表面活性剂(或“表面活性试剂”)为化学实体,当其溶解在水溶液中时,它能减少该溶液的表面张力或者水溶液和另一种液体之间的界面张力,结果是iRNA通过粘膜的吸收得到增强。除了胆汁盐和脂肪酸之外,这些渗透增强剂还包括例如月桂基硫酸钠、聚氧乙烯-9-月桂基醚和聚氧乙烯-20-鲸蜡基醚(参见例如马尔姆斯滕M.药物递送中的表面活性剂和聚合物,健康传播杂志,纽约州纽约,2002;李等人,治疗性药物载体系统锐评,1991,第92页;以及全氟化学乳剂如FC-43(高桥(Takahashi)等人,药物药理学杂志(J.Pharm.Pharmacol.),1988,40,252)。

充当渗透增强剂的各种脂肪酸及其衍生物例如包括油酸、月桂酸、癸酸(正癸酸)、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、甘油单油酸酯(1-单油酰-外消旋-甘油)、二月桂精、辛酸、花生四烯酸、甘油1-单癸酸酯、1-十二烷基氮杂环庚-2-酮、酰基肉碱、酰基胆碱、其C1-20烷基酯(例如、甲基酯、异丙基酯和叔丁基酯)及其单和二甘油酯(即油酸酯、月桂酸酯、癸酸酯、肉豆蔻酸酯、棕榈酸酯、硬脂酸酯、亚油酸酯等)(参见例如托乌托(Touitou),E.等人,药物递送的增强(Enhancement in Drug Delivery),CRC出版社,丹弗斯(Danvers),MA,2006;李(Lee)等人,治疗性药物载体系统锐评(CriticalReviews in Therapeutic Drug Carrier Systems),1991,第92页;马尔姆斯滕(Malmsten),M.治疗性药物载体系统锐评(Critical Reviews in Therapeutic DrugCarrier Systems),1990,7,1-33;El哈里里(Hariri)等人,药房和药理学杂志(J.Pharm.Pharmacol.),1992,44,651-654)。

胆汁的生理学作用包括促进脂质和脂溶性维生素的分散和吸收(参见例如,马尔姆斯滕M.药物递送中的表面活性剂和聚合物,健康传播杂志,纽约州纽约,2002;布鲁顿(Brunton),第38章,引自:古德曼吉尔曼治疗学的药理学基础(Goodman&Gilman’s ThePharmacological Basis of Therapeutics),第9版,哈德曼(Hardman)等人编辑,McGraw-Hill公司,纽约,1996,第934-935页)。不同天然的胆汁盐和它们的合成衍生物用作渗透增强剂。因此术语“胆汁盐”包括胆汁的任何天然存在的组分以及任何它们的合成衍生物。适合的胆盐包括,例如,胆酸(或其药学上可接受的钠盐、胆酸钠)、脱氢胆酸(脱氢胆酸钠)、脱氧胆酸(脱氧胆酸钠)、葡糖胆酸(葡糖胆酸钠)、甘氨胆酸(甘氨胆酸钠)、甘氨脱氧胆酸(甘氨脱氧胆酸钠)、牛磺胆酸(牛磺胆酸钠)、牛磺脱氧胆酸(牛磺脱氧胆酸钠)、鹅脱氧胆酸(鹅脱氧胆酸钠)、熊脱氧胆酸(UDCA)、牛磺-24,25-二氢褐霉酸钠(STDHF)、糖二氢褐霉酸钠以及聚氧乙烯-9-月桂基醚(POE)(参见例如,马尔姆斯滕M.药物递送中的表面活性剂和聚合物,健康传播杂志,纽约州纽约,2002;李等人,治疗性药物载体系统锐评,1991,第92页;斯温雅德(Swinyard),第39章,雷明顿氏药物科学,第18版,真纳罗(Gennaro)编辑,麦克出版公司,伊斯顿,Pa.,1990,第782-783页;村西,治疗性药物载体系统锐评,1990,7,1-33;山本(Yamamoto)等人,药理学与实验治疗学杂志(J.Pharm.Exp.Ther.),1992,263,25;山下(Yamashita)等人,药物科学杂志,1990,79,579-583)。

与本发明有关使用的螯合剂可以定义为通过金属离子与其形成复合物将金属离子从溶液中除去的化合物,结果是通过粘膜的iRNA的吸收得到加强。关于它们在本发明中作为增渗剂的应用,因为多数特征化的DNA核酸酶需要二价金属离子用于催化并且因此可以被螯合剂抑制,螯合剂还具有充当DNase抑制剂的附加优势(加热特(Jarrett),层析学杂志(J.Chromatogr.),1993,618,315-339)。合适的螯合剂包括但不限于乙二胺四乙酸二钠(EDTA)、柠檬酸、水杨酸盐(例如,水杨酸钠、5-甲氧基水杨酸酯和高香草酸酯(homovanilate))、胶原的N-酰基衍生物、月桂醇聚醚-9和β-二酮的N-氨基酰基衍生物(烯胺)(参见例如凯特戴尔(Katdare),A.等人,用于制药、生物技术和药物递送的赋形剂的发展(Excipient development for pharmaceutical,biotechnology,and drug delivery),CRC出版社,丹弗斯(Danvers),MA,2006;李(Lee)等人,治疗性药物载体系统锐评(CriticalReviews in Therapeutic Drug Carrier Systems),1991,第92页;村西(Muranishi),治疗性药物载体系统锐评(Critical Reviews in Therapeutic Drug Carrier Systems),1990,7,1-33;布尔(Buur)等人,控制释放杂志(J.Control Rel.),1990,14,43-51)。

如在此所使用,非螯合性非表面活性剂渗透增强化合物可以定义为作为螯合剂或作为表面活性剂展示不明显活性但是反而增强iRNA经消化道粘膜吸收的化合物(见例如村西,治疗性药物载体系统锐评,1990,7,1-33)。这类别的渗透增强剂包括例如不饱和环状脲、1-烷基-和1-烯基氮杂环-烷酮衍生物(李(Lee)等人,治疗性药物载体系统锐评(Critical Reviews in Therapeutic Drug Carrier Systems),1991,第92页);以及非类固醇类的抗炎剂,如双氯芬酸钠、引哚美辛和保泰松(山下(Yamashita)等人,药物科学杂志(J.Pharm.Pharmacol.),1987,39,621-626)。

还可以添加在细胞水平增强摄取iRNA的试剂至本发明的药物组合物和其他组合物。例如阳离子脂质,如脂质体(淳一(Junichi)等人,美国专利号5,705,188)、阳离子甘油衍生物和聚阳离子分子如聚赖氨酸(洛洛(Lollo)等人,PCT申请WO 97/30731)也已知增强dsRNA的细胞摄取。可商购获得的转染试剂的实例包括例如Lipofectamine

可以用其他试剂来增强所给予核酸的渗透,包括二醇如乙二醇和丙二醇、吡咯如2-吡咯、氮酮和萜类如苧烯和薄荷酮。

v.载体

本发明的某些组合物还将载体化合物结合在配制品中。如在此使用,“载体化合物”或“载体”可以指惰性的(即,本身不具有生物活性)但通过体内过程被识别为核酸的一种核酸或其类似物,这些体内过程例如通过降解生物活性的核酸或促进它从循环中去除来降低具有生物活性的核酸的生物可利用率。核酸和载体化合物的共给予(典型地后一种物质过量)可以引起肝脏、肾脏或其他外循环储库中回收的核酸量大幅度减少,假定归因于该载体化合物与该核酸之间对共同受体的竞争。例如与聚肌苷酸、硫酸葡聚糖、聚胞苷酸或4-乙酰胺基-4’异硫氰酸茋-2,2’-二磺酸共给予时,肝组织中部分硫代磷酸酯化的dsRNA的回收可以减少(宫尾(Miyao)等人,DsRNA研究与研发(DsRNA Res.Dev.),1995,5,115-121;高仓(Takakura)等人,DsRNA和核酸药物研发(DsRNA&Nucl.Acid Drug Dev.),1996,6,77-183)。

vi.赋形剂

与载体化合物相反,“药物载体”或“赋形剂”是药学上可接受的溶剂、悬浮剂或用于将一种或多种核酸递送至动物的任何其他药理学上惰性的媒介物。该赋形剂可以是液体或固体,并且当与核酸和给定药物组合物的其他组分组合时,参考意欲的给予方式,对赋形剂进行选择以提供希望的容积、稠度等。典型的药用载体包括但不限于结合剂(例如,糯性玉米淀粉、聚乙烯吡咯烷酮或羟丙基甲基纤维素等);填充剂(例如,乳糖和其他糖、微晶纤维素、果胶、明胶、硫酸钙、乙基纤维素、聚丙烯酸酯或磷酸氢钙等);润滑剂(例如,硬脂酸镁、滑石、二氧化硅、胶态二氧化硅、硬脂酸、金属硬脂酸盐、氢化植物油、玉米淀粉、聚乙二醇、苯甲酸钠、乙酸钠等);崩解剂(例如,淀粉、淀粉乙醇酸钠等);以及润湿剂(例如,月桂基硫酸钠)。

适合于非肠胃外给予的、不与核酸发生有毒反应的、药学上可接受的有机或无机赋形剂也可以用来配制本发明的组合物。适当的药学上可接受载体包括但不限于:水、盐溶液、醇、聚乙二醇、明胶、乳糖、直链淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、羟甲基纤维素、聚乙烯吡咯烷酮等。

用于局部给予核酸的配制品可以包括在普通溶剂如醇中的无菌或非无菌的水溶液、非水溶液,或在液体或固体油基质中的核酸溶液。这些溶液还可以包括缓冲液、稀释液和其他合适的添加剂。可以使用适合于非肠胃外给予的、且不与核酸发生有毒反应的、药学上可接受的有机或无机赋形剂。

适当的药学上可接受赋形剂包括但不限于:水、盐溶液、醇、聚乙二醇、明胶、乳糖、直链淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、羟甲基纤维素、聚乙烯吡咯烷酮等。

vii.其他组分

本发明的这些组合物可以另外地含有其他本领域熟知用量的在药物组合物中常用的辅助组分。因此,例如这些组合物可以包括另外的、可相容的药学上有活性的物质如止痒剂、收敛剂、局部麻醉剂或抗炎剂,或者可以包括对本发明的组合物的各种剂型的物理配制有用的其他物质,如染料、芳香剂、防腐剂、抗氧化剂、遮光剂、增稠剂和稳定剂。然而,当加入此类物质时,它们不应当过度干扰本发明的组合物的成份的生物活性。可以将这些配制品进行灭菌并且如果希望的话与助剂例如润滑剂、防腐剂、稳定剂、湿润剂、乳化剂、盐混合,用于影响渗透压的盐、缓冲液、着色物质、芳香物质和/或芬芳物质等进行混合,这些助剂不与该配制品中的一种或多种核酸发生有害的相互作用。

水性悬浮液可以包括增加该悬浮液的粘度的物质,这样的物质包括例如羧甲基纤维素钠、山梨醇和/或葡聚糖。该混悬液还可以含有稳定剂。

在一些实施例中,在本发明中体现的药物组合物包含(a)一种或多种iRNA化合物和(b)一种或多种通过非iRNA机制起作用并且有用于治疗APOC3相关障碍的试剂。这些试剂的实例包括但不限于抗炎剂、抗脂肪变性剂、抗病毒和/或抗纤维化剂。另外,其他常用于保护肝脏的物质,如水飞蓟素,也可以与在此描述的iRNA结合使用。其他有用于治疗肝脏疾病的试剂包括替比夫定,恩替卡韦和蛋白酶抑制剂,如特拉匹韦和例如在董(Tung)等人,美国专利申请公开号2005/0148548、2004/0167116、和2003/0144217;以及在黑尔(Hale)等人,美国专利申请公开号2004/0127488中披露的其他试剂。

此类化合物的毒性与治疗功效可以通过在细胞培养物或实验动物中的标准药学程序来确定,例如以确定LD50(50%群体的致死剂量)以及ED50(在50%群体中治疗有效的剂量)。毒性与疗效之间的剂量比为治疗指数,并且它可以被表示为比率LD50/ED50。优选那些表现出高的治疗指数的化合物。

从细胞培养物测定法和动物研究中获得的数据可以在配制人类中使用的剂量范围时使用。在此在本发明中体现的组合物的剂量总体上处在一个循环浓度范围内,该范围包括具有很小或没有毒性的ED50。该剂量可以取决于所采用的剂型以及使用的给予途径而在该范围内变化。对于任何在本发明表征的方法中使用的化合物,该治疗上有效的剂量可以从细胞培养测定来进行初始估计。可以在动物模型中配制一种剂量以实现包括化合物或(当适宜时)靶标序列的多肽产物的循环血浆浓度范围(例如实现所述多肽浓度减少),其中所述血浆浓度包括如在细胞培养物中所测定的IC50(即,试验化合物的实现症状的半数最大抑制的浓度)。这类信息可以用来更精确地确定用于人类中的剂量。可以测量血浆中的水平,例如通过高效液相色谱法。

除了给予它们之外,如在此所讨论的,还可以将在本发明中表征的iRNA与在治疗由APOC3表达介导的病理学过程方面有效的其他已知试剂联合给予。在任何情况下,基于使用本领域已知或在此描述的标准功效量值所观察到的结果,给予医师可以调整给予iRNA的量和时间。

VII.本发明的方法

本发明提供了治疗性和预防性的方法,这些方法包括向患有或有倾向发展APOC3相关疾病、障碍和/或病症(例如高甘油三酯血症)的受试者给予包含iRNA试剂的药物组合物、或包含本发明的iRNA的载体。

在一方面,本发明提供了治疗患有将受益于APOC3表达降低的障碍(例如高甘油三酯血症和其他APOC-3相关疾病,例如非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗);高血压;心血管疾病,例如动脉粥样硬化;和胰腺炎,例如急性胰腺炎)的受试者。

本发明的这些治疗方法(和用途)包括向该受试者(例如人)给予治疗有效量的靶向APOC3基因的一种iRNA试剂或包含靶向APOC3基因的iRNA试剂的一种药物组合物,从而治疗患有将受益于APOC3表达降低的障碍的该受试者。

在一个方面,本发明提供了预防患有障碍的受试者中至少一种症状的方法,所述障碍将受益于APOC3表达的降低,例如与APOC3相关的疾病,例如高甘油三酯血症和其他可能由高甘油三酯血症引起的、与其关联的、或是其后果的疾病。后者的疾病包括但不限于非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗)、动脉粥样硬化、心血管疾病或胰腺炎。该方法包括向该受试者给予治疗有效量的本发明的iRNA试剂(例如dsRNA)或载体,由此预防患有将受益于APOC3表达降低的障碍的受试者中的至少一种症状。

在另一个方面,本发明提供治疗有效量的本发明的iRNA试剂用于治疗受试者,例如将受益于APOC3表达减少和/或抑制的受试者的用途。

在另一个方面中,本发明提供了靶向APOC3基因的本发明的iRNA试剂(例如,dsRNA)或包含靶向APOC3基因的iRNA试剂的药物组合物在制造用于治疗受试者(例如,将受益于APOC3表达的减少和/或抑制的受试者,如患有将受益于APOC3表达减少的障碍(例如与APOC3相关的疾病,例如高甘油三酯血症和其他可能由高甘油三酯血症引起的、与其关联的、或是其后果的疾病)的药剂的用途。后者的疾病可以包括但不限于非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗)、动脉粥样硬化、心血管疾病或胰腺炎。

在另一个方面,本发明提供了本发明的iRNA(例如dsRNA)用于预防遭受将从减少和/或抑制APOC3表达受益的障碍(如APOC3相关的疾病,例如高甘油三酯血症和其他可能由高甘油三酯血症引起的、与其关联的、或是其后果的疾病)的受试者的至少一种症状的用途。后者的疾病可以包括但不限于非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗)、动脉粥样硬化、心血管疾病或胰腺炎。

在另一个方面,本发明提供了本发明的iRNA试剂用于制造药剂以预防遭受将从减少和/或抑制APOC3表达受益的障碍(如APOC3相关的疾病,例如高甘油三酯血症和其他可能由高甘油三酯血症引起的、与其关联的、或是其后果的疾病)的受试者的至少一种症状的用途。后者的疾病可以包括但不限于非酒精性脂肪肝、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗)、动脉粥样硬化、心血管疾病或胰腺炎。

在一个实施例中,向患有APOC3相关疾病的受试者给予一种靶向APOC3的iRNA试剂,这样使得当向该受试者给予该dsRNA试剂时,例如该受试者的细胞、组织、血液、或其他组织或流体中的APOC3水平降低至少约10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、12%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、62%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少约99%或更多。

本发明的这些方法和用途包括给予在此描述的一种组合物,这样使得靶APOC3基因的表达减少如持续约1、2、3、4、5、6、7、8、12、16、18、24、28、32、36、40、44、48、52、56、60、64、68、72、76或约80小时。在一个实施例中,使靶APOC3基因的表达减少延长的持续时间,例如至少约2、3、4、5、6、7天或更多,例如约1周、2周、3周或约4周或更长。

根据本发明的方法和用途给予dsRNA可以导致患有APOC3相关疾病的患者的此类疾病或障碍的严重程度、体征、症状、和/或标志物减少。在上下文中“减少”意为此水平的统计学上的显著减少。该减少可以是例如至少大约5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或约100%。

可以例如通过测量疾病进展、疾病缓和、症状严重性、疼痛减少、生活品质、维持治疗作用所要求的药剂的剂量、疾病标志物或适用于被治疗或目标用于预防的给定疾病的任何其他可测量参数的水平来评价疾病治疗或预防的功效。通过测量任何一个此类参数或任何参数组合来监测治疗或预防的功效,这在本领域技术人员的能力范围之内。例如,高甘油三酯血症的治疗功效可以例如通过定期监测血液甘油三酯水平来进行评定。稍后数据与初始数据的比较为医师提供该治疗是否有效的指示。通过测量任何一个此类参数或任何参数组合来监测治疗或预防的功效,这在本领域技术人员的能力范围之内。关于给予靶向APOC3的iRNA或其药用组合物,针对APOC3相关疾病“有效”指示以临床上适当的方式给予会对至少统计学上显著分数的患者产生有益作用,如改善症状、治愈、减少疾病、延长生命、提高生活品质或由熟悉治疗APOC3相关疾病和相关病因的医师公认为积极的其他作用。

当在疾病状态的一个或多个参数方面存在统计学上显著的改善的时候,或者通过使得以另外方式可以被预期的症状不再恶化或发展,治疗或预防效果是明显的。作为一个实例,在疾病的可测量参数方面的至少10%,并且优选是至少20%、30%、40%、50%或更多的有利改变,可以指示有效治疗。也可以使用如本领域已知的给定疾病的实验动物模型,判定给定iRNA药物或这种药物的配制品的功效。当使用实验动物模型时,当观察到标志物或症状的统计学上显著的减少时,治疗的功效是明显的。APOC3相关疾病的合适动物模型包括具有例如高甘油三酯血症的任何动物模型。这样的动物模型包括,例如表达人载脂蛋白C2(APOC2)基因的转基因小鼠(例如B6菌株的小鼠;CBA-Tg(APOC2)2Bres/J菌株的小鼠或B6.Cg-Tg(APOC2)2Bres/J菌株的小鼠,可从缅因州巴尔港的杰克逊纪念实验室(JacksonLaboratory)获得);表达人载脂蛋白C3(APOC3)基因的转基因小鼠(例如B6菌株的小鼠;CBA-Tg(APOC3)3707Bres/J菌株的小鼠,可从杰克逊纪念实验室获得);纯合脂肪肝营养不良(fld)小鼠(如C3H/HeJ-Lpin1

在某些实施例中,适于测试iRNA或包含本发明的iRNA的配制品的功效的实验动物模型包括兔。示例性的兔模型包括例如渡边遗传性高脂血症(WHHL)兔(Watanabeheritable hyperlipidemic rabbit)。由于缺乏低密度脂蛋白(LDL)受体,WHHL兔是高胆固醇血症的动物模型。描述了WHHL兔的特征和使用WHHL兔进行的研究的历史描述于,例如,盐见(Shiomi),M.和伊藤(Ito),T.,动脉粥样硬化(Artherosclerosis)(2009),207(1):1-7,其全部内容通过引用并入本文。WHHL兔显示胆固醇和甘油三酯水平升高,如下所示:

在某些实施例中,WHHL兔可能是用于研究APOC3表达抑制的优选动物模型,因为WHHL兔比其他动物模型显示出更像人类的脂质谱,并且可能有助于了解ApoC3敲低与降低甘油三酯之间的关系,并且可以报告给予非人灵长类动物的研究的剂量。各种动物种类之间的酶和脂蛋白谱的比较呈现于下表2中。

表2.动物物种间酶和脂蛋白谱的差异

适于测试iRNA或包含本发明的iRNA的配制品的功效的的其他示例性兔模型包括例如饮食诱导肥胖兔。饮食诱导的肥胖兔以前在文献中已经被描述过,例如,泰勒(Taylor)和法恩(Fan),生物科学前沿杂志(Front.Biosci.)(1997),2:298-308;卡罗尔(Carroll)等人,美国生理学杂志(Am.J.Physiol.)(1996)271:H373-8;安蒂克(Antic)等人,美国高血压杂志(Am.J.Hypertens.)(2000),13:556-9;卡罗尔(Carroll)等人,斯堪的纳维亚生理学报(Acta Physiol.Scand.)(2004),181:183-91;和龙(Rong)等人,动脉粥样硬化、血栓和血管生物学(Arterioscler.Thromb.Vasc.Biol.)(1999),19:2179-88,其全部内容通过引用并入本文。

可以向受试者给予治疗量的iRNA,如约0.01mg/kg、0.02mg/kg、0.03mg/kg、0.04mg/kg、0.05mg/kg、0.1mg/kg、0.15mg/kg、0.2mg/kg、0.25mg/kg、0.3mg/kg、0.35mg/kg、0.4mg/kg、0.45mg/kg、0.5mg/kg、0.55mg/kg、0.6mg/kg、0.65mg/kg、0.7mg/kg、0.75mg/kg、0.8mg/kg、0.85mg/kg、0.9mg/kg、0.95mg/kg、1.0mg/kg、1.1mg/kg、1.2mg/kg、1.3mg/kg、1.4mg/kg、1.5mg/kg、1.6mg/kg、1.7mg/kg、1.8mg/kg、1.9mg/kg、2.0mg/kg、2.1mg/kg、2.2mg/kg、2.3mg/kg、2.4mg/kg、2.5mg/kg dsRNA、2.6mg/kg dsRNA、2.7mg/kg dsRNA、2.8mg/kg dsRNA、2.9mg/kg dsRNA、3.0mg/kg dsRNA、3.1mg/kg dsRNA、3.2mg/kg dsRNA、3.3mg/kg dsRNA、3.4mg/kg dsRNA、3.5mg/kg dsRNA、3.6mg/kg dsRNA、3.7mg kg dsRNA、3.8mg/kg dsRNA、3.9mg/kg dsRNA、4.0mg/kg dsRNA、4.1mg/kg dsRNA、4.2mg/kg dsRNA、4.3mg/kg dsRNA、4.4mg/kg dsRNA、4.5mg/kg dsRNA、4.6mg/kg dsRNA、4.7mg/kg dsRNA、4.8mg/kg dsRNA、4.9mg/kg dsRNA、5.0mg/kg dsRNA、5.1mg/kg dsRNA、5.2mg kg dsRNA、5.3mg/kg dsRNA、5.4mg/kg dsRNA、5.5mg/kg dsRNA、5.6mg/kg dsRNA、5.7mg/kg dsRNA、5.8mg/kg dsRNA、5.9mg/kg dsRNA、6.0mg/kg dsRNA、6.1mg/kg dsRNA、6.2mg/kg dsRNA、6.3mg/kg dsRNA、6.4mg/kg dsRNA、6.5mg/kg dsRNA、6.6mg/kg dsRNA、6.7mg/kg dsRNA、6.8mg/kg dsRNA、6.9mg/kg dsRNA、7.0mg/kg dsRNA、7.1mg/kg dsRNA、7.2mg/kg dsRNA、7.3mg/kg dsRNA、7.4mg/kg dsRNA、7.5mg/kg dsRNA、7.6mg/kg dsRNA、7.7mg/kg dsRNA、7.8mg/kg dsRNA、7.9mg/kg dsRNA、8.0mg/kg dsRNA、8.1mg/kg dsRNA、8.2mg/kg dsRNA、8.3mg/kg dsRNA、8.4mg/kg dsRNA、8.5mg/kg dsRNA、8.6mg/kg dsRNA、8.7mg/kg dsRNA、8.8mg/kg dsRNA、8.9mg/kg dsRNA、9.0mg/kg dsRNA、9.1mg/kg dsRNA、9.2mg/kg dsRNA、9.3mg/kg dsRNA、9.4mg/kg dsRNA、9.5mg/kg dsRNA、9.6mg/kg dsRNA、9.7mg/kg dsRNA、9.8mg/kg dsRNA、9.9mg/kg dsRNA、9.0mg/kg dsRNA、10mg/kg dsRNA、15mg/kg dsRNA、20mg/kg dsRNA、25mg/kg dsRNA、30mg/kg dsRNA、35mg/kg dsRNA、40mg/kg dsRNA、45mg/kgdsRNA或约50mg/kg dsRNA。这些列举值的中间值与范围也意在成为本发明的部分。

在某些实施例中,例如,当本发明的组合物包含如在此所描述的dsRNA和脂质时,可以向受试者给予治疗量的iRNA,如约0.01mg/kg至约5mg/kg、约0.01mg/kg至约10mg/kg、约0.05mg/kg至约5mg/kg、约0.05mg/kg至约10mg/kg、约0.1mg/kg至约5mg/kg、约0.1mg/kg至约10mg/kg、约0.2mg/kg至约5mg/kg、约0.2mg/kg至约10mg/kg、约0.3mg kg至约5mg/kg、约0.3mg/kg至约10mg/kg、约0.4mg/kg至约5mg/kg、约0.4mg/kg至约10mg/kg、约0.5mg/kg至约5mg/kg、约0.5mg kg至约10mg/kg、约1mg/kg至约5mg/kg、约1mg/kg至约10mg/kg、约1.5mg/kg至约5mg/kg、约1.5mg/kg至约10mg/kg、约2mg/kg至约2.5mg/kg、约2mg/kg至约10mg/kg、约3mg/kg至约5mg/kg、约3mg/kg至约10mg/kg、约3.5mg/kg至约5mg/kg、约4mg/kg至约5mg/kg、约4.5mg/kg至约5mg/kg、约4mg/kg至约10mg/kg、约4.5mg/kg至约10mg/kg、约5mg/kg至约10mg/kg、约5.5mg/kg至约10mg/kg、约6mg/kg至约10mg/kg、约6.5mg/kg至约10mg/kg、约7mg/kg至约10mg/kg、约7.5mg/kg至约10mg/kg、约8mg/kg至约10mg/kg、约8.5mg/kg至约10mg/kg、约9mg/kg至约10mg/kg或约9.5mg/kg至约10mg/kg。这些列举值的中间值与范围也意在成为本发明的部分。

例如,可以按以下剂量给予dsRNA:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8、8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9或约10mg/kg。这些列举值的中间值与范围也意在成为本发明的部分。

在其他实施例中,例如,当本发明的组合物包含如在此所描述的dsRNA和N-乙酰半乳糖胺时,可以向受试者给予治疗量的iRNA,如约0.1mg/kg至约50mg/kg、约0.25mg/kg至约50mg/kg、约0.5mg/kg至约50mg/kg、约0.75mg/kg至约50mg/kg、约1mg/kg至约50mg/mg、约1.5mg/kg至约50mg/kg、约2mg/kg至约50mg/kg、约2.5mg/kg至约50mg/kg、约3mg/kg至约50mg/kg、约3.5mg/kg至约50mg/kg、约4mg/kg至约50mg/kg、约4.5mg/kg至约50mg/kg、约5mg/kg至约50mg/kg、约7.5mg/kg至约50mg/kg、约10mg/kg至约50mg/kg、约15mg/kg至约50mg/kg、约20mg/kg至约50mg/kg、约20mg/kg至约50mg/kg、约25mg/kg至约50mg/kg、约25mg/kg至约50mg/kg、约30mg/kg至约50mg/kg、约35mg/kg至约50mg/kg、约40mg/kg至约50mg/kg、约45mg/kg至约50mg/kg、约0.1mg/kg至约45mg/kg、约0.25mg/kg至约45mg/kg、约0.5mg/kg至约45mg/kg、约0.75mg/kg至约45mg/kg、约1mg/kg至约45mg/mg、约1.5mg/kg至约45mg/kg、约2mg/kg至约45mg/kg、约2.5mg/kg至约45mg/kg、约3mg/kg至约45mg/kg、约3.5mg/kg至约45mg/kg、约4mg/kg至约45mg/kg、约4.5mg/kg至约45mg/kg、约5mg/kg至约45mg/kg、约7.5mg/kg至约45mg/kg、约10mg/kg至约45mg/kg、约15mg/kg至约45mg/kg、约20mg/kg至约45mg/kg、约20mg/kg至约45mg/kg、约25mg/kg至约45mg/kg、约25mg/kg至约45mg/kg、约30mg/kg至约45mg/kg、约35mg/kg至约45mg/kg、约40mg/kg至约45mg/kg、约0.1mg/kg至约40mg/kg、约0.25mg/kg至约40mg/kg、约0.5mg/kg至约40mg/kg、约0.75mg/kg至约40mg/kg、约1mg/kg至约40mg/mg、约1.5mg/kg至约40mg/kg、约2mg/kg至约40mg/kg、约2.5mg/kg至约40mg/kg、约3mg/kg至约40mg/kg、约3.5mg/kg至约40mg/kg、约4mg/kg至约40mg/kg、约4.5mg/kg至约40mg/kg、约5mg/kg至约40mg/kg、约7.5mg/kg至约40mg/kg、约10mg/kg至约40mg/kg、约15mg/kg至约40mg/kg、约20mg/kg至约40mg/kg、约20mg/kg至约40mg/kg、约25mg/kg至约40mg/kg、约25mg/kg至约40mg/kg、约30mg/kg至约40mg/kg、约35mg/kg至约40mg/kg、约0.1mg/kg至约30mg/kg、约0.25mg/kg至约30mg/kg、约0.5mg/kg至约30mg/kg、约0.75mg/kg至约30mg/kg、约1mg/kg至约30mg/mg、约1.5mg/kg至约30mg/kg、约2mg/kg至约30mg/kg、约2.5mg/kg至约30mg/kg、约3mg/kg至约30mg/kg、约3.5mg/kg至约30mg/kg、约4mg/kg至约30mg/kg、约4.5mg/kg至约30mg/kg、约5mg/kg至约30mg/kg、约7.5mg/kg至约30mg/kg、约10mg/kg至约30mg/kg、约15mg/kg至约30mg/kg、约20mg/kg至约30mg/kg、约20mg/kg至约30mg/kg、约25mg/kg至约30mg/kg、约0.1mg/kg至约20mg/kg、约0.25mg/kg至约20mg/kg、约0.5mg/kg至约20mg/kg、约0.75mg/kg至约20mg/kg、约1mg/kg至约20mg/mg、约1.5mg/kg至约20mg/kg、约2mg/kg至约20mg/kg、约2.5mg/kg至约20mg/kg、约3mg/kg至约20mg/kg、约3.5mg/kg至约20mg/kg、约4mg/kg至约20mg/kg、约4.5mg/kg至约20mg/kg、约5mg/kg至约20mg/kg、约7.5mg/kg至约20mg/kg、约10mg/kg至约20mg/kg或约15mg/kg至约20mg/kg的剂量。在一个实施例中,当本发明的组合物包含如在此所描述的一种dsRNA和N-乙酰半乳糖胺时,可以向受试者给予治疗量的约10mg/kg至约30mg/kg的dsRNA。这些列举值的中间值与范围也意在成为本发明的部分。

例如可以给予受试者治疗量的iRNA:例如大约0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8、8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20、20.5、21、21.5、22、22.5、23、23.5、24、24.5、25、25.5、26、26.5、27、27.5、28、28.5、29、29.5、30、31、32、33、34、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、或大约50mg/kg。这些列举值的中间值与范围也意在成为本发明的部分。

在本发明的某些实施例中,例如,当双链RNAi试剂包括一个修饰(例如,在三个连续核苷酸上具有三个相同修饰的一个或多个基序),在该试剂的裂解位点处或附近包括这样一个基序、六个硫代磷酸酯键联以及脂质时,按以下剂量给予这样一种制剂:约0.01至约0.5mg/kg、约0.01至约0.4mg/kg、约0.01至约0.3mg/kg、约0.01至约0.2mg/kg、约0.01至约0.1mg/kg、约0.01mg/kg至约0.09mg/kg、约0.01mg/kg至约0.08mg/kg、约0.01mg/kg至约0.07mg/kg、约0.01mg/kg至约0.06mg/kg、约0.01mg/kg至约0.05mg/kg、约0.02至约0.5mg/kg、约0.02至约0.4mg/kg、约0.02至约0.3mg/kg、约0.02至约0.2mg/kg、约0.02至约0.1mg/kg、约0.02mg/kg至约0.09mg/kg、约0.02mg/kg至约0.08mg/kg、约0.02mg/kg至约0.07mg/kg、约0.02mg/kg至约0.06mg/kg、约0.02mg/kg至约0.05mg/kg、约0.03至约0.5mg/kg、约0.03至约0.4mg/kg、约0.03至约0.3mg/kg、约0.03至约0.2mg/kg、约0.03至约0.1mg/kg、约0.03mg/kg至约0.09mg/kg、约0.03mg/kg至约0.08mg/kg、约0.03mg/kg至约0.07mg/kg、约0.03mg/kg至约0.06mg/kg、约0.03mg/kg至约0.05mg/kg、约0.04至约0.5mg/kg、约0.04至约0.4mg/kg、约0.04至约0.3mg/kg、约0.04至约0.2mg/kg、约0.04至约0.1mg/kg、约0.04mg/kg至约0.09mg/kg、约0.04mg/kg至约0.08mg/kg、约0.04mg/kg至约0.07mg/kg、约0.04mg/kg至约0.06mg/kg、约0.05至约0.5mg/kg、约0.05至约0.4mg/kg、约0.05至约0.3mg/kg、约0.05至约0.2mg/kg、约0.05至约0.1mg/kg、约0.05mg/kg至约0.09mg/kg、约0.05mg/kg至约0.08mg/kg、或约0.05mg/kg至约0.07mg/kg。前述列举值的中间值与范围也意在成为本发明的部分,例如该RNAi试剂可以约0.015mg/kg至约0.45mg/kg的剂量给予受试者。

在一些实施例中,RNAi试剂,例如药物组合物中的RNAi试剂可以按约0.01mg/kg、0.0125mg/kg、0.015mg/kg、0.0175mg/kg、0.02mg/kg、0.0225mg/kg、0.025mg/kg、0.0275mg/kg、0.03mg/kg、0.0325mg/kg、0.035mg/kg、0.0375mg/kg、0.04mg/kg、0.0425mg/kg、0.045mg/kg、0.0475mg/kg、0.05mg/kg、0.0525mg/kg、0.055mg/kg、0.0575mg/kg、0.06mg/kg、0.0625mg/kg、0.065mg/kg、0.0675mg/kg、0.07mg/kg、0.0725mg/kg、0.075mg/kg、0.0775mg/kg、0.08mg/kg、0.0825mg/kg、0.085mg/kg、0.0875mg/kg、0.09mg/kg、0.0925mg/kg、0.095mg/kg、0.0975mg/kg、0.1mg/kg、0.125mg/kg、0.15mg/kg、0.175mg/kg、0.2mg/kg、0.225mg/kg、0.25mg/kg、0.275mg/kg、0.3mg/kg、0.325mg/kg、0.35mg/kg、0.375mg/kg、0.4mg/kg、0.425mg/kg、0.45mg/kg、0.475mg/kg或约0.5mg/kg的剂量给予。前述列举值的中间值与范围也意在成为本发明的部分。

可以通过静脉输注经一个时期来给予该iRNA,例如经5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、或大约25分钟的时期。该给予可以例如在一个常规基础上(例如每周地、双周地(即,每两周))重复持续一个月、两个月、三个月、四个月或更久。在初始治疗方案后,可以基于更低频率给予治疗。例如在每周或双周给予持续三个月后,给予可以按每个月重复一次,持续六个月或一年或更长。

给予该iRNA可以使例如患者的细胞、组织、血液、尿液或其他区室中的APOC3水平降低至少约5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少约99%或更多。

在给予全部剂量的iRNA之前,可以给予患者更少的剂量,如5%输注,并且监测不良作用,如过敏反应。在另一个实例中,针对不想要的免疫刺激作用(比如增加的细胞因子(例如,TNF-α或INF-α)水平)对该患者进行监测。

归因于对APOC3表达的抑制作用,根据本发明的组合物或从其中制备的药物组合物可以提高生活品质。

本发明的一种iRNA可以“裸”形式给予,其中该修饰的或未修饰的iRNA试剂直接悬浮于水性或适合的缓冲溶剂中,作为一种“游离iRNA”。游离iRNA是在药物组合物不存在下进行给予。该游离iRNA可以处在一种适合的缓冲溶液中。该缓冲溶液可以包含乙酸盐、柠檬酸盐、醇溶谷蛋白、碳酸盐或磷酸盐或其任何组合。在一个实施例中,该缓冲溶液是磷酸盐缓冲盐水(PBS)。可以将含有该iRNA的缓冲溶液的pH和摩尔渗透压浓度进行调节,这样使得它适合用于向受试者给予。

可替代地,可以将本发明的iRNA作为药物组合物进行给予,如dsRNA脂质体配制品。

将受益于APOC3基因表达的减少和/或抑制的受试者是患有如在此所描述的APOC3相关疾病或障碍的那些受试者。

治疗将受益于APOC3基因表达的降低和/或抑制的受试者包括治疗性和预防性治疗。

本发明进一步提供一种iRNA试剂或其一种药物组合物与其他药物剂和/或其他治疗方法(例如,与已知的药物剂和/或已知的治疗方法,例如像当前用于治疗这些病症所采用的那些)组合用于治疗将受益于APOC3表达的降低和/或抑制的受试者(例如,患有APOC3相关疾病的受试者)的方法和用途。例如,在某些实施例中,将一种靶向APOC3的iRNA与例如适用于治疗APOC3相关疾病的一种另外的试剂组合地给予。

另外的治疗剂的实例包括已知的治疗高甘油三酯血症和其他可能由高甘油三酯血症引起的、与其关联的、或是其后果的疾病。例如,在本发明中表征的iRNA可以与下列各项一起施用:例如,HMG-CoA还原酶抑制剂(例如,他汀类)、贝特类、胆酸螯合剂、烟酸、抗血小板剂、血管紧张素转化酶抑制剂、血管紧张素II受体拮抗剂(例如,氯沙坦钾,如默克公司的

示例性胆酸调节剂包括例如HBS-107(久光制药株式会社(Hisamitsu)/伴宇公司)、Btg-511(英国科技集团(British Technology Group))、BARI-1453(赛诺菲安万特公司)、S-8921(盐野义制药株式会社)、SD-5613(辉瑞公司)、和AZD-7806(阿斯特捷利康制药公司)。示例性过氧化物酶体增殖激活受体(PPAR)激动剂包括例如,替格列扎(AZ-242)(阿斯特捷利康制药公司)、萘格列酮(MCC-555)(三菱公司(Mitsubishi)/强生公司(Johnson&Johnson))、GW-409544((配体制药公司(Ligand Pharmaceuticals/葛兰素史克股份有限公司)、GW-501516(配体制药公司/葛兰素史克股份有限公司)、LY-929(配体制药公司和礼来公司)、LY-465608(配体制药公司和礼来公司)、LY-518674(配体制药公司和礼来公司)、以及MK-767(默克公司和杏林制药(Kyorin))。示例性的基于基因的治疗剂包括例如,AdGWEGF121.10(金维克公司(GenVec))、ApoAl(优时比制药公司(UCB Pharma)/弗尔涅集团(GroupeFournier)、EG-004(Trinam公司)(阿克治疗公司(Ark Therapeutics))、以及ATP结合盒转运子-Al(ABCA1)(CV治疗公司/英塞特公司(Incyte)、赛诺菲安万特公司、氙能科技有限公司(Xenon))。示例性的糖蛋白Ilb/IIIa抑制剂包括例如,罗昔非班(也称为DMP754,百时美施贵宝公司)、更托非班(默克KGaA公司/山之内集团公司(Yamanouchi))、以及色满非班(千年制药公司(Millennium Pharmaceuticals))。示例性的鲨烯合酶抑制剂包括例如,BMS-1884941(百时美施贵宝公司)、CP-210172(辉瑞公司)、CP-295697(辉瑞公司)、CP-294838(辉瑞公司)、以及TAK-475(武田药品有限公司)。示例性的MCP-I抑制剂为例如RS-504393(罗氏生物科学公司)。抗动脉粥样硬化剂BO-653(中外制药株式会社(ChugaiPharmaceuticals))、以及烟酸衍生物乃克宁(Nyclin)(山之内集团公司)也适合用于与本发明中表征的dsRNA组合给予。适合于与靶向APOC3的dsRNA一起给予的示例性联合治疗剂包括,advicor(来自科斯制药公司的尼克酸/洛伐他汀)、氨氯地平/阿托伐他汀(辉瑞公司)、以及依折麦布/辛伐他汀(例如,默克公司/先灵葆雅制药有限公司的

在一个实施例中,iRNA剂与依折麦布/辛伐他汀组合以联合方式给药(例如,

可以将该iRNA试剂以及另外的治疗试剂和/或治疗在相同时间和/或在相同组合中进行给予,例如非胃肠地,或者可以将该另外的治疗试剂作为一种单独组合物的部分或在单独的时间和/或通过本领域内已知的或在此描述的另一种方法进行给予。

本发明还提供使用本发明的一种iRNA试剂和/或一种含有本发明的iRNA试剂的组合物来降低和/或抑制细胞中的APOC3表达的方法。在其他方面中,本发明提供用于在降低和/或抑制细胞中的APOC3表达的本发明的一种iRNA和/或一种包含本发明的iRNA的组合物。在又其他方面,提供本发明的一种iRNA和/或一种包含本发明的iRNA的组合物用于制造一种用以降低和/或抑制细胞中的APOC3表达的药剂中的用途。

这些方法和用途包括使该细胞与本发明的一种iRNA(例如,dsRNA)相接触并且使该细胞维持足以获得APOC3基因的mRNA转录物降解的时间,从而抑制该细胞中的APOC3基因的表达。

基因表达的减少可以通过本领域中已知的任何方法来评价。例如,APOC3表达的降低可以通过如下进行确定:使用对本领域内的普通技术人员而言常规的方法(例如,RNA印迹法、qRT-PCR)来确定APOC3的mRNA表达水平,使用对本领域内的普通技术人员而言常规的方法(如蛋白质印迹法、免疫技术、流式细胞术方法、ELISA)来确定APOC3的蛋白质水平,和/或确定APOC3的生物活性。

在本发明的这些方法和用途中,该细胞可以在体外或体内被接触,即,该细胞可以在一个受试者内。

使用本发明的这些方法适合用于治疗的细胞可以是表达APOC3基因的任何细胞。适合于在本发明的方法和用途中使用的细胞可以是哺乳动物细胞,例如灵长类细胞(例如人类细胞或非人类灵长类细胞,例如猴细胞或黑猩猩细胞)、非灵长类细胞(例如母牛细胞、猪细胞、骆驼细胞、美洲驼细胞、马细胞、山羊细胞、兔细胞、绵羊细胞、仓鼠、豚鼠细胞、猫细胞、狗细胞、大鼠细胞、小鼠细胞、狮子细胞、老虎细胞、熊细胞、或水牛细胞)、鸟细胞(例如鸭细胞或鹅细胞)、或鲸细胞。在一个实施例中,该细胞是人类细胞,例如人类肝细胞。

在该细胞中可以使APOC3表达抑制至少约5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或约100%。

本发明的体内方法和用途可以包括向受试者给予一种含有iRNA的组合物,其中该iRNA包括与有待治疗的哺乳动物的APOC3基因的RNA转录物的至少一部分互补的核苷酸序列。当有待治疗的生物体是人时,该组合物可以通过本领域中已知的任何手段来给予,包括但不限于皮下、静脉内、口服、腹膜内或胃肠外途径,包括颅内(例如,脑室内、实质内和鞘内)、肌肉内、透皮、气道(气雾剂)、鼻、直肠和局部(包括颊和舌下)给予。在某些实施例中,这些组合物通过皮下或静脉内输注或注射来给予。

在一些实施例中,该给予是经由积存注射。积存注射可以在一个延长的时期以连贯的方式释放该iRNA。因此,积存注射可以减少获得希望的作用所需要的给药频率,该希望的作用例如对APOC3的希望的抑制或治疗性或预防性作用。积存注射还可以提供更连贯的血清浓度。积存注射包括皮下注射或肌内注射。在优选的实施例中,该积存注射是皮下注射。

在一些实施例中,该给予是经由一个泵。该泵可以是外部泵或手术植入的泵。在某些实施例中,该泵是一个皮下植入的渗透泵。在其他实施例中,该泵是一个输注泵。输注泵可以用于静脉内、皮下、动脉或硬膜外输注。在优选实施例中,该输注泵是一个皮下输注泵。在其他实施例中,该泵是将该iRNA递送至肝脏的一个手术植入的泵。

给予模式可以基于是否希望局部治疗或全身性治疗并且基于有待治疗的区域来进行选择。给予的途径和部位可以被选择成增强靶向。

在一个面中,本发明还提供用于抑制哺乳动物(例如人)中的APOC3基因表达的方法。本发明还提供一种包含靶向哺乳动物细胞中的APOC3基因的iRNA(例如,dsRNA)的组合物,以用于抑制该哺乳动物中的APOC3基因的表达。在另一个方面中,本发明提供靶向哺乳动物细胞中的APOC3基因的一种iRNA(例如dsRNA)在制造一种用于抑制该哺乳动物中的APOC3基因表达的药剂中的用途。

这些方法和用途包括向该哺乳动物(例如人)给予一种包含靶向该哺乳动物细胞中的APOC3基因的iRNA(例如dsRNA)的组合物并且维持该哺乳动物一段时间,该时间足以获得该APOC3基因的mRNA转录物的降解,由此抑制该哺乳动物中的该APOC3基因的表达。

基因表达的降低可以在给予iRNA的受试者的外周血液样品中通过在此描述的本领域中已知的任何方法(例如qRT-PCR)进行评定。蛋白质产生的减少可以通过本领域中任何已知的方法并且通过在此描述的方法(例如ELISA或蛋白质印迹法)来评价。在一个实施例中,穿刺肝脏活检样品用作用于监测APOC3基因和/或蛋白质表达降低的组织材料。在另一个实施例中,血液样品用作用于监测APOC3基因和/或蛋白质表达降低的组织材料。

在一个实施例中,在给予iRNA试剂之后验证体内RISC介导的靶标裂解是通过执行如本领域中已知的5’-RACE或该方案的修改来进行的(莱瑟姆(Lasham)A等人,(2010)核酸研究(Nucleic Acid Res.),38(3)p-e19)(齐默尔曼(Zimmermann)等人(2006)自然(Nature)441:111-4)。

本发明由以下实例进一步展示,这些实例不应被视为限制性的。在本申请中引用的所有参考文献、专利和公开的专利申请的全部内容,以及附图和序列表在此引入作为参考。

仅仅出于举例的目的,本发明包括但不限于如下技术方案:

技术方案1.一种用于抑制细胞中载脂蛋白C3(APOC3)的表达的双链RNAi试剂,其中所述双链RNAi试剂包含形成一个双链区的一条有义链和一条反义链,其中所述有义链包含与SEQ ID NO:1的核苷酸序列相差不多于3个核苷酸的至少15个连续核苷酸,并且所述反义链包含与SEQ ID NO:2的核苷酸序列相差不多于3个核苷酸的至少15个连续核苷酸,

其中至少一条链的基本上所有核苷酸都是修饰的核苷酸,并且其中所述有义链被共轭到在3’-末端处附接的一个配体上。

技术方案2.如技术方案1所述的双链RNAi试剂,其中所述有义链和所述反义链包含一个互补区,该互补区包含与表4A、表4B、表5、表8、表9、表10、表11A、表11B以及表12、表13中列出的序列中的任一个相差不多于3个核苷酸的至少15个连续核苷酸。

技术方案3.如技术方案1或2所述的双链RNAi试剂,其中所述修饰的核苷酸中的至少一个选自下组,该组由以下各项组成:3’-末端脱氧胸腺嘧啶(dT)核苷酸、2’-O-甲基修饰的核苷酸、2’-氟代修饰的核苷酸、2’-脱氧修饰的核苷酸、锁定核苷酸、解锁核苷酸、构象限制性核苷酸、限制性乙基核苷酸、脱碱基核苷酸、2’-氨基修饰的核苷酸、2’-O-烯丙基修饰的核苷酸、2’-C-烷基修饰的核苷酸、2’-羟基修饰的核苷酸、2’-甲氧基乙基修饰的核苷酸、2’-O-烷基修饰的核苷酸、吗啉代核苷酸、包含氨基磷酸酯、非天然碱基的核苷酸、四氢吡喃修饰的核苷酸、1,5-失水己糖醇修饰的核苷酸、环己烯基修饰的核苷酸、包含5’-硫代磷酸酯基团的核苷酸、包含5’-甲基膦酸酯基团的核苷酸、包含5’磷酸酯或5’磷酸酯模拟物的核苷酸、包含乙烯基磷酸酯的核苷酸、包含腺苷-乙二醇核酸(GNA)的核苷酸、包含胸苷-乙二醇核酸(GNA)S-异构体的核苷酸、包含2-羟甲基-四氢呋喃-5-磷酸酯的核苷酸、包含2’-脱氧胸苷-3’磷酸酯的核苷酸、包含2’-脱氧鸟苷-3’-磷酸酯的核苷酸、和与胆甾醇基衍生物或十二烷酸双癸酰胺基团连接的末端核苷酸。

技术方案4.如技术方案1所述的双链RNAi试剂,其中所述有义链的基本上所有这些核苷酸均是修饰的。

技术方案5.如技术方案1所述的双链RNAi试剂,其中所述反义链的基本上所有这些核苷酸均是修饰的。

技术方案6.如技术方案1所述的双链RNAi试剂,其中所述有义链的基本上所有这些核苷酸和所述反义链的基本上这些核苷酸均是修饰的核苷酸。

技术方案7.如技术方案1所述的双链RNAi试剂,其中所述有义链的所有这些核苷酸均是修饰的核苷酸。

技术方案8.如技术方案1所述的双链RNAi试剂,其中所述反义链的所有这些核苷酸均是修饰的核苷酸。

技术方案9.如技术方案1所述的双链RNAi试剂,其中所述有义链的所有这些核苷酸和所述反义链的所有这些核苷酸均是修饰的核苷酸。

技术方案10.如技术方案1所述的双链RNAi试剂,其中至少一条链包含具有至少1个核苷酸的3’突出端。

技术方案11.如技术方案1所述的双链RNAi试剂,其中至少一条链包含具有至少2个核苷酸的3’突出端。

技术方案12.一种能够抑制细胞中载脂蛋白C3(APOC3)的表达的双链RNAi试剂,其中所述双链RNAi试剂包含形成一个双链区的一条有义链和一条反义链,其中所述反义链包含与编码APOC3的mRNA的一部分互补的一个区,其中每条链的长度是约14个至约30个核苷酸,其中所述双链RNAi试剂由化学式(III)表示:

有义链:5’n

反义链:3’

n

其中:

i、j、k和l各自独立地是0或1;

p、p’、q和q’各自独立地是0-6;

各N

各N

各n

XXX、YYY、ZZZ、X’X’X’、Y’Y’Y’、以及Z’Z’Z’各自独立地表示在三个连续核苷酸上具有三个相同修饰的一个基序;

N

其中该有义链被共轭到至少一个配体上。

技术方案13.如技术方案12所述的双链RNAi试剂,其中i是0;j是0;i是1;j是1;i和j两者均是0;或i和j两者均是1。

技术方案14.如技术方案12所述的双链RNAi试剂,其中k是0;l是0;k是1;l是1;k和l两者均是0;或k和l两者均是1。

技术方案15.如技术方案12所述的双链RNAi试剂,其中该YYY基序出现在该有义链的裂解位点处或附近。

技术方案16.如技术方案12所述的双链RNAi试剂,其中该Y’Y’Y’基序出现在该反义链的从5’-端起的11、12以及13位置处。

技术方案17.如技术方案16所述的双链RNAi试剂,其中该Y’是2’-O-甲基或2’-氟代。

技术方案18.如技术方案12所述的双链RNAi试剂,其中化学式(III)由化学式(IIIa)表示:

有义链:5’n

反义链:3’n

技术方案19.如技术方案1或12所述的双链RNAi试剂,其中该双链区的长度是15-30个核苷酸对。

技术方案20.如技术方案19所述的双链RNAi试剂,其中该双链区的长度是17-23个核苷酸对。

技术方案21.如技术方案19所述的双链RNAi试剂,其中该双链区的长度是17-25个核苷酸对。

技术方案22.如技术方案19所述的双链RNAi试剂,其中该双链区的长度是23-27个核苷酸对。

技术方案23.如技术方案19所述的双链RNAi试剂,其中该双链区的长度是19-21个核苷酸对。

技术方案24.如技术方案19所述的双链RNAi试剂,其中该双链区的长度是21-23个核苷酸对。

技术方案25.如技术方案1或12所述的双链RNAi试剂,其中每条链具有15-30个核苷酸。

技术方案26.如技术方案1或12所述的双链RNAi试剂,其中每条链具有19-30个核苷酸。

技术方案27.如技术方案12所述的双链RNAi试剂,其中在这些核苷酸上的这些修饰选自下组,该组由以下各项组成:如表5、表9、表10、表11B、表12、和表13及其组合中列出的修饰。

技术方案28.如技术方案12所述的双链RNAi试剂,其中在这些核苷酸上的这些修饰是2’-O-甲基和2’-氟代修饰。

技术方案29.如技术方案1或12所述的双链RNAi试剂,其中该配体是通过一个二价或三价支链接头附接的一种或多种GalNAc衍生物。

技术方案30.如技术方案1或12所述的双链RNAi试剂,其中该配体是

技术方案31.如技术方案1或12所述的双链RNAi试剂,其中该配体被附接到该有义链的3’端上。

技术方案32.如技术方案31所述的双链RNAi试剂,其中该RNAi试剂被共轭到如以下示意图中所示的该配体上

其中X是O或S。

技术方案33.如技术方案1或12所述的双链RNAi试剂,其中所述RNAi试剂进一步包含至少一个硫代磷酸酯或甲基膦酸酯核苷酸间键联。

技术方案34.如技术方案33所述的双链RNAi试剂,其中该硫代磷酸酯或甲基膦酸酯核苷酸间键联是在一条链的3’-末端处。

技术方案35.如技术方案34所述的双链RNAi试剂,其中所述链是该反义链。

技术方案36.如技术方案34所述的双链RNAi试剂,其中所述链是该有义链。

技术方案37.如技术方案33所述的双链RNAi试剂,其中该硫代磷酸酯或甲基膦酸酯核苷酸间键联是在一条链的5’-末端处。

技术方案38.如技术方案37所述的双链RNAi试剂,其中所述链是该反义链。

技术方案39.如技术方案37所述的双链RNAi试剂,其中所述链是该有义链。

技术方案40.如技术方案33所述的双链RNAi试剂,其中该硫代磷酸酯或甲基膦酸酯核苷酸间键联是在一条链的5’-末端和3’-末端这两者处。

技术方案41.如技术方案40所述的双链RNAi试剂,其中所述链是该反义链。

技术方案42.如技术方案33所述的双链RNAi试剂,其中所述RNAi试剂包含6-8个硫代磷酸酯核苷酸间键联。

技术方案43.如技术方案42所述的双链RNAi试剂,其中该反义链包含在该5’-末端处的两个硫代磷酸酯核苷酸间键联和在该3’-末端处的两个硫代磷酸酯核苷酸间键联,并且该有义链包含在该5’-末端抑或该3’-末端处的至少两个硫代磷酸酯核苷酸间键联。

技术方案44.如技术方案1或12所述的双链RNAi试剂,其中在该双链体的该反义链的5’-端的1位置处的碱基对是一个AU碱基对。

技术方案45.如技术方案9所述的双链RNAi试剂,其中这些Y核苷酸含有一个2’-氟代修饰。

技术方案46.如技术方案12所述的双链RNAi试剂,其中这些Y’核苷酸含有一个2’-O-甲基修饰。

技术方案47.如技术方案1或12所述的双链RNAi试剂,其中该有义链具有总计21个核苷酸,并且该反义链具有总计23个核苷酸。

技术方案48.如技术方案1或12所述的双链RNAi试剂,其中所述RNAi试剂选自下组,该组具有在表4A、表4B、表5、表8、表9、表11A、表11B、表12以及表13中的任一个中列出的RNAi试剂。

技术方案49.一种能够抑制细胞中载脂蛋白C3(APOC3)表达的双链RNAi试剂,其中所述双链RNAi试剂包含形成一个双链区的一条有义链和一条反义链,

其中所述有义链包含5’-GCUUAAAAGGGACAGUAUUCU-3’(SEQ ID NO:13),并且所述反义链包含5’-AGAAUACUGUCCCUUUUAAGCAA-3’(SEQ ID NO:14),

其中所述有义链的基本上所有这些核苷酸和所述反义链的基本上所有这些核苷酸是修饰的核苷酸,

其中所述有义链被共轭到在3’-末端处附接的一个配体上,并且

其中该配体是通过一个二价或三价支链接头附接的一种或多种GalNAc衍生物。

技术方案50.一种能够抑制细胞中载脂蛋白C3(APOC3)的表达的双链RNAi试剂,其中所述双链RNAi试剂包含形成一个双链区的一条有义链和一条反义链,

其中所述有义链包含5’-GCUUAAAAGGGACAGUAUUCU-3’(SEQ ID NO:13),并且所述反义链包含5’-UGAAUACUGUCCCUUUUAAGCAA-3’(SEQ ID NO:15),

其中所述有义链的基本上所有这些核苷酸和所述反义链的基本上所有这些核苷酸是修饰的核苷酸,

其中所述有义链被共轭到在3’-末端处附接的一个配体上,并且

其中该配体是通过一个二价或三价支链接头附接的一种或多种GalNAc衍生物。

技术方案51.一种能够抑制细胞中载脂蛋白C3(APOC3)的表达的双链RNAi试剂,其中所述双链RNAi试剂包含形成一个双链区的一条有义链和一条反义链,

其中所述有义链包含5’-GCUUAAAAGGGACAGUAUUCA-3’(SEQ ID NO:659),并且该反义链包含5’-UGAAUACUGUCCCUUUUAAGCAA-3’(SEQ ID NO:670),

其中所述有义链的基本上所有这些核苷酸和所述反义链的基本上所有这些核苷酸是修饰的核苷酸,

其中所述有义链被共轭到在3’-末端处附接的一个配体上,并且

其中该配体是通过一个二价或三价支链接头附接的一种或多种GalNAc衍生物。

技术方案52.如技术方案49-51中任一项所述的双链RNAi试剂,其中所述有义链的所有这些核苷酸和所述反义链的所有这些核苷酸均包含一种修饰。

技术方案53.如技术方案49-51中任一项所述的双链RNAi试剂,其中所述修饰的核苷酸中的至少一个选自下组,该组由以下各项组成:3’-末端脱氧胸腺嘧啶(dT)核苷酸、2’-O-甲基修饰的核苷酸、2’-氟代修饰的核苷酸、2’-脱氧修饰的核苷酸、锁定核苷酸、解锁核苷酸、构象限制性核苷酸、限制性乙基核苷酸、脱碱基核苷酸、2’-氨基修饰的核苷酸、2’-O-烯丙基修饰的核苷酸、2’-C-烷基修饰的核苷酸、2’-羟基修饰的核苷酸、2’-甲氧基乙基修饰的核苷酸、2’-O-烷基修饰的核苷酸、吗啉代核苷酸、包含氨基磷酸酯、非天然碱基的核苷酸、四氢吡喃修饰的核苷酸、1,5-失水己糖醇修饰的核苷酸、环己烯基修饰的核苷酸、包含5’-硫代磷酸酯基团的核苷酸、包含5’-甲基膦酸酯基团的核苷酸、包含5’磷酸酯或5’磷酸酯模拟物的核苷酸、包含乙烯基磷酸酯的核苷酸、包含腺苷-乙二醇核酸(GNA)的核苷酸、包含胸苷-乙二醇核酸(GNA)S-异构体的核苷酸、包含2-羟甲基-四氢呋喃-5-磷酸酯的核苷酸、包含2’-脱氧胸苷-3’磷酸酯的核苷酸、包含2’-脱氧鸟苷-3’-磷酸酯的核苷酸、和与胆甾醇基衍生物或十二烷酸双癸酰胺基团连接的末端核苷酸。

技术方案54.如技术方案49-51中任一项所述的双链RNAi试剂,其中所述RNAi试剂包含不超过10个包含2’-氟代修饰的核苷酸。

技术方案55.如技术方案49-51中任一项所述的双链RNAi试剂,其中所述RNAi试剂包含不超过6个包含2’-氟代修饰的核苷酸。

技术方案56.如技术方案49-51中任一项所述的双链RNAi试剂,其中所述有义链包含不超过4个包含2’-氟代修饰的核苷酸。

技术方案57.如技术方案49-51中任一项所述的双链RNAi试剂,其中所述反义链包含不超过6个包含2’-氟代修饰的核苷酸。

技术方案58.如技术方案49-51中任一项所述的双链RNAi试剂,其中所述反义链包含不超过2个包含2’-氟代修饰的核苷酸。

技术方案59.如技术方案49-51中任一项所述的双链RNAi试剂,进一步包含在该反义链的5’核苷酸处的5’-磷酸酯或5’-磷酸酯模拟物。

技术方案60.如技术方案49-51中任一项所述的双链RNAi试剂,进一步包含在该反义链的5’核苷酸处的5’-磷酸酯模拟物。

技术方案61.如技术方案60所述的双链RNAi试剂,其中该5’-磷酸酯模拟物是5’-乙烯基磷酸酯(5’-VP)。

技术方案62.如技术方案49-51中任一项所述的双链RNAi试剂,其中该配体是

技术方案63.如技术方案62所述的双链RNAi试剂,其中该RNAi试剂被共轭到如以下示意图中所示的该配体上

其中X是O或S。

技术方案64.一种双链RNAi试剂,包含在表4A、表4B、表5、表8、表9、表10、表11A、表11B、表12、以及表13中的任一个中列出的这些RNAi序列。

技术方案65.如技术方案64所述的双链RNAi试剂,其中该RNAi试剂是包括如下序列的AD-57553:

有义链:5’GfscsUfuAfaAfaGfGfGfaCfaGfuAfuUfcUfL96 3’(SEQ ID NO:16)

反义链:5’asGfsaAfuAfcUfgUfcccUfuUfuAfaGfcsAfsa3’(SEQ ID NO:17)。

技术方案66.如技术方案64所述的双链RNAi试剂,其中该RNAi试剂是包括如下序列的AD-65696:

有义链:5’GfscsUfuAfaAfaGfGfGfaCfaGfuAfuUfcUfL96 3’(SEQ ID NO:18)

反义链:5’VPusGfsaAfuAfcUfgUfcccUfuUfuAfaGfcsasa3’(SEQ ID NO:19)。

技术方案67.如技术方案64所述的双链RNAi试剂,其中该RNAi试剂是包括如下序列的AD-65703:

有义链:5’gscsuuaaAfaGfGfGfacaguauucaL96 3’(SEQ ID NO:20)

反义链:5’usGfsaauAfcUfGfucccUfuUfuaagcsasa 3’(SEQ ID NO:21)。

技术方案68.如技术方案64所述的双链RNAi试剂,其中该RNAi试剂是包括如下序列的AD-65704:

有义链:5’gscsuuaaAfaGfGfGfacaguauucaL96 3’(SEQ ID NO:22)

反义链:5’usGfsaauacugucccUfuuuaagcsasa 3’(SEQ ID NO:23)。

技术方案69.如技术方案64所述的双链RNAi试剂,其中该RNAi试剂是包括如下序列的AD-67221:

有义链:5’cscscaauAfaAfGfCfuggacaagaaL96 3’(SEQ ID NO:714)

反义链:5’usUfscuuGfuCfCfagcuUfuAfuugggsasg 3’(SEQ ID NO:718)。

技术方案70.如技术方案64所述的双链RNAi试剂,其中该RNAi试剂是包括如下序列的AD-69535:

有义链:5’gscsuuaaaaGfgGfacaguauuca 3’(SEQ ID NO:738)

反义链:5’sGfsaauacugucCfcUfuuuaagcsasa 3’(SEQ ID NO:749)。

技术方案71.如技术方案64所述的双链RNAi试剂,其中该RNAi试剂是包括如下序列的AD-69541:

有义链:5’gscsuuaaaaGfgGfacagu(Agn)uuca 3’(SEQ ID NO:744)

反义链:5’usGfsaauacugucCfcUfuuuaagcsasa 3’(SEQ ID NO:755)。

技术方案72.一种包含修饰的反义多核苷酸试剂的组合物,其中所述试剂能够抑制细胞中APOC3的表达,并且包含与选自下组的一个有义序列互补的一个序列,该组具有在表4A、表4B、表5、表8、表9、表10、表11A、表11B、表12以及表13中的任一个中列出的序列,其中该多核苷酸的长度是约14个至约30个核苷酸。

技术方案73.一种载体,含有技术方案1、12和49-51中任一项所述的双链RNAi试剂。

技术方案74.一种细胞,含有如技术方案1、12和49-51中任一项所述的双链RNAi试剂。

技术方案75.一种药物组合物,包含如技术方案1、12和49-51中任一项所述的双链RNAi试剂,或如技术方案72所述的包含修饰的反义多核苷酸试剂的组合物,或如技术方案73所述的载体。

技术方案76.如技术方案75所述的药物组合物,其中双链RNAi试剂存在于一种无缓冲的溶液中。

技术方案77.如技术方案76所述的药物组合物,其中所述无缓冲的溶液是盐水或水。

技术方案78.如技术方案76所述的药物组合物,其中所述双链RNAi试剂存在于一种缓冲溶液中。

技术方案79.如技术方案78所述的药物组合物,其中所述缓冲溶液包含乙酸盐、柠檬酸盐、醇溶谷蛋白、碳酸盐或磷酸盐或其任何组合。

技术方案80.如技术方案79所述的药物组合物,其中所述缓冲溶液是磷酸盐缓冲盐水(PBS)。

技术方案81.一种抑制细胞中载脂蛋白C3(APOC3)表达的方法,该方法包括:

(a)使该细胞与如技术方案1、12和49-51中任一项所述的双链RNAi试剂、或如技术方案72所述的包含修饰的反义多核苷酸试剂的组合物、如技术方案73所述的载体、或如技术方案75-80中任一项所述的药物组合物接触;以及

(b)使在步骤(a)中产生的该细胞维持足以获得APOC3基因的mRNA转录物降解的时间,从而抑制该细胞中该APOC3基因的表达。

技术方案82.如技术方案81所述的方法,其中所述细胞是在受试者体内。

技术方案83.如技术方案72所述的方法,其中该受试者是人或兔。

技术方案84.如技术方案83所述的方法,其中该受试者患有一种APOC3相关疾病。

技术方案85.如技术方案81-84中任一项所述的方法,其中该APOC3表达被抑制至少约30%、约40%、约50%、约60%、约70%、约80%、约90%、约95%、约98%或约100%。

技术方案86.一种治疗患有载脂蛋白C3(APOC3)相关疾病的受试者的方法,该方法包括向该受试者给予治疗有效量的如技术方案1、12和49-51中任一项所述的双链RNAi试剂、或如技术方案72所述的包含修饰的反义多核苷酸试剂的组合物、或如技术方案73所述的载体、或如技术方案75-80中任一项所述的药物组合物,从而治疗所述受试者。

技术方案87.如技术方案86所述的方法,其中该APOC3相关疾病是高甘油三酯血症。

技术方案88.如技术方案86所述的方法,其中该APOC3相关疾病选自下组,该组由以下各项组成:非酒精性脂肪肝疾病、非酒精性脂肪性肝炎、多囊卵巢综合征、肾脏疾病、肥胖症、2型糖尿病(胰岛素抵抗)、高血压、动脉粥样硬化和胰腺炎。

技术方案89.如技术方案82所述的方法,其中以约0.01mg/kg至约10mg/kg或约0.5mg/kg至约50mg/kg的剂量给予该双链RNAi试剂。

技术方案90.如技术方案89所述的方法,其中以约10mg/kg至约30mg/kg的剂量给予该双链RNAi试剂。

技术方案91.如技术方案89所述的方法,其中以约3mg/kg的剂量给予该双链RNAi试剂。

技术方案92.如技术方案89所述的方法,其中以约10mg/kg的剂量给予该双链RNAi试剂。

技术方案93.如技术方案82所述的方法,其中皮下给予该双链RNAi试剂。

技术方案94.如技术方案82所述的方法,其中静脉内给予该双链RNAi试剂。

技术方案95.如技术方案82所述的方法,其中肌肉内给予该双链RNAi试剂。

技术方案96.如技术方案82所述的方法,其中以两个或更多个剂量给予所述RNAi试剂。

技术方案97.如技术方案95所述的方法,其中以选自下组的时间间隔给予所述RNAi试剂,该组由以下各项组成:每隔约12小时一次、每隔约24小时一次、每隔约48小时一次、每隔约72小时一次以及每隔约96小时一次。

技术方案98.如技术方案82所述的方法,进一步包括向该受试者给予一种另外的治疗剂。

技术方案99.如技术方案98所述的方法,其中该另外的治疗剂选自下组,该组由以下各项组成:HMG-CoA还原酶抑制剂、贝特类、胆酸螯合剂、烟酸、抗血小板剂、血管紧张素转化酶抑制剂、血管紧张素II受体拮抗剂、酰基辅酶A胆固醇酰基转移酶(ACAT)抑制剂、胆固醇吸收抑制剂、胆固醇酯转移蛋白(CETP)抑制剂、微粒体甘油三酯转移蛋白(MTTP)抑制剂、胆固醇调节剂、胆酸调节剂、过氧化物酶体增殖激活受体(PPAR)激动剂、基于基因的治疗剂、复合血管保护剂、糖蛋白Ilb/IIIa抑制剂、阿司匹林或阿司匹林样化合物、IBAT抑制剂、鲨烯合酶抑制剂、单核细胞趋化蛋白(MCP)-I抑制剂或鱼油。

实例

在这些实施例中使用如下材料和方法。

试剂来源

当在此没有专门给出试剂来源时,此种试剂可以从分子生物学试剂的任何供应商获得,其品质/纯度标准符合分子生物学应用。

siRNA合成

使用固体载体介导的亚磷酰胺化学以1μmol规模在Mermade 192合成仪(BioAutomation)上合成APOC3 siRNA序列。固体载体是负载有定制GalNAc配体的可控孔度玻璃

最初使用“TOFFEE-6PS”基序合成用于体外筛选测定的APOC3序列。在TOFFEE-6PS设计中,有义链长度为21个核苷酸,3’末端具有GalNAc配体,5’端为2个磷酸硫酸酯,并且在9、10和11位置为2’F核苷酸三联体。TOFFEE-6PS设计中的反义序列长度为23个核苷酸;在11、12和13位置含有2’-OMe核苷酸的3个核苷酸三联体,分别在3’和5’端有两个硫代磷酸酯。

在完成固相合成之后,将寡核糖核苷酸从固体载体裂解且在密封的96孔深孔板中使用200μL水性甲胺试剂在60℃下脱保护20分钟。对于用叔丁基二甲基甲硅烷基(TBDMS)基团保护的含有2’核糖残基(2’-OH)的序列,使用TEA.3HF(三乙胺三氢氟化物)试剂进行第二步骤脱保护。向甲胺脱保护溶液中添加200μL的二甲亚砜(DMSO)和300μl TEA.3HF试剂,并且将溶液在60℃下孵育另外20分钟。在裂解和脱保护步骤结束时,使合成板到达室温且通过添加1mL的乙腈:乙醇混合物(9:1)来沉淀。将这些板在-80℃下冷却2小时,并且在一种多通道移液管帮助下小心地倾析上清液。将寡核苷酸沉淀再悬浮于20mM NaOAc缓冲液中,并且在配备有一个A905自动进样器和一个Frac 950积分收集器的一种AKTA普利菲尔(Purifier)系统上使用一个5mL HiTrap尺寸排阻柱(通用电气医疗集团(GE Healthcare))脱盐。将脱盐的样品收集在96孔板中。将来自每一序列的样品通过LC-MS进行分析以确证一致性、UV(260nm)用于定量并且通过IEX色谱法选定样品集以确定纯度。

在一个帝肯(Tecan)液体处理机器人上进行APOC3单链的退火。将有义链和反义链的等摩尔混合物组合且在96孔板中退火。在组合互补单链之后,将96孔板紧密密封且在炉中在100℃下加热10分钟,且使其历经2-3小时的时间段缓慢到达室温。将每种多链体的浓度标准化至于1X PBS中10μM且随后提交用于体外筛选测定。

细胞培养和96孔转染

将Hep3B细胞(ATCC公司,弗吉尼亚州马纳萨斯)在37℃在5%CO

使用DYNABEADS mRNA分离试剂盒(英杰公司,部件号:610-12)的总RNA分离

收获细胞并且在150μl裂解/结合缓冲液中进行裂解,然后使用EppendorfThermomixer在850rpm混合5分钟,混合速度在整个过程中相同。将10微升磁珠和80μl溶解/结合缓冲液混合物添加至圆底板,并且混合1分钟。使用磁性表座捕获磁珠并且将该上清液移除而不扰动这些珠子。在移出上清液后,将裂解的细胞添加至剩余的磁珠并且混合5分钟。在去除上清液之后,将磁珠用150μl洗涤缓冲液A洗涤2次并且混合1分钟。珠粒再次被捕获并且去除上清液。然后将珠粒用150μl洗涤缓冲液B洗涤,捕获,并且去除上清液。接着将珠粒用150μl洗脱缓冲液洗涤,捕获,并且去除上清液。允许珠子干燥持续2分钟。在干燥之后,添加50μl洗脱缓冲液,并且在70℃下混合5分钟。将珠粒在磁体上捕获持续5分钟。将40μl上清液去除,并且添加到另一个96孔板中。

使用ABI高容量cDNA逆转录试剂盒(应用生物系统,福斯特市,加利福尼亚州,目录号4368813)的cDNA合成

以每个反应2μl 10X缓冲液、0.8μl 25X dNTP、2μl随机引物、1μl反转录酶、1μlRNA酶抑制剂以及3.2μl H

实时PCR

将2μl的cDNA添加至主体混合物中,该主体混合物在一个384孔板(罗氏公司,目录号04887301001)的每一孔中包括0.5μl GAPDH TaqMan探针(应用生物系统公司,目录号4326317)、0.5μl ApoC3TaqMan探针(应用生物系统公司,目录号Hs00163644_m1)以及5μlLightcycler 480探针主体混合物(罗氏公司,目录号04887301001)。实时PCR在LightCycler480实时PCR系统(罗氏公司)上使用ΔΔCt(RQ)测定而进行。除非在总结表中另外指出,否则在两个独立转染中测试每种双链体,并且一式两份测定每个转染。

为了计算相对倍数变化,使用ΔΔCt方法分析实时数据,并且将这些数据归一化为利用以下这样的细胞而进行的测定:这些细胞是转染了10nM AD-1955的细胞,或是模拟转染的细胞。使用4参数拟合模型使用XLFit计算IC

AD-1955的有义链和反义链是:

有义:cuuAcGcuGAGuAcuucGAdTsdT(SEQ ID NO:28)

反义:UCGAAGuACUcAGCGuAAGdTsdT(SEQ ID NO:29)。

表3.核酸序列表示中使用的核苷酸单体的缩写。应当理解除非另外指明,在寡核苷酸中存在时这些单体是由5’-3’-磷酸二酯键相互连接。

靶向APOC3的iRNA试剂的初始组的生成

一组靶向人APOC3,“载脂蛋白C-III”(人类:NCBI refseq ID NM_000040.1)的iRNA以及毒素APOC3直向同源物(食蟹猴:XM_005579730;恒河猴,XM_001090312.2;小鼠:NM_023114;大鼠,NM_012501)是使用定制的R和Python脚本进行设计的。人APOC3REFSEQmRNA具有533个碱基的长度。用源自靶向大量脊椎动物基因的多于20,000种不同的iRNA设计的mRNA敲低的直接测量的一种线性模型来测定用于该组siRNA设计的基本原理和方法是如下:从位置47至位置533的每种潜在19聚体iRNA的预测功效。设计APOC3siRNA的亚组,其在人、食蟹猴和恒河猴之间设计完美或接近完美的匹配。设计了与小鼠和大鼠APOC3直向同源物具有完美或接近完美匹配的另一个子组。对于iRNA的每条链,定制Python脚本用于一种蛮力搜索中来测量该siRNA与靶物种转录组中的所有潜在比对之间的错配的数目和位置。对种子区(在此定义为反义寡核苷酸中的位置2-9)中的错配以及iRNA的裂解位点(在此定义为反义寡核苷酸的位置10-11)给出额外权重。这些错配的相对权重是2.8;对于种子错配、裂解位点以及直到反义位置19的其他位置是1.2:1。第一位置中的错配被忽略。通过求和每个加权的错配的值来计算每条链的特异性分数。对于在人和食蟹猴中的反义分数>=3.0并且预测功效是APOC3转录物的>=70%敲低的siRNA给予优先。

合成一系列具有如上所述设计的序列的iRNA双链体,并且将其与三价GalNAc在有义链的3’端共轭。这些双链体的序列示于表4A和表4B中。这些相同的序列也被合成为具有不同的核苷酸修饰并且与三价GalNAc共轭。修饰的双链体的序列示于表5中。

实例2.siRNA序列的体外检测

表6示出使用所选修饰的APOC3 iRNA的Hep3B细胞中单次剂量筛选的结果。数据表示为相对于用AD-1955非靶向对照转染的细胞中剩余的APOC3 mRNA,用iRNA转染的细胞中剩余的APOC3 mRNA的百分比。

表6 APOC3单次剂量筛选结果。

表7示出了用指定的食蟹猴/人交叉反应性修饰的APOC3 iRNA转染的Hep3B细胞的剂量反应。指定的IC

表7 APOC3剂量反应筛选

实例3.野生型小鼠中AD-57558 siRNA序列的体内测试

在野生型小鼠中测试了啮齿动物特异性AD-57558-GalNAc3序列的抑制APOC3表达并降低血清脂质的能力。AD-57558-GalNAc3以3mg/kg、10mg/kg或30mg/kg作为单次剂量立即给药,PBS用作阴性对照。通过RT-PCR给药5天后测定APOC3的表达。如图2所示,结果表明AD-57558-GalNAc3能够将APOC3的表达降低约60%(对于3mg/kg剂量)、约80%(对于10mg/kg剂量)和约85%(对于30mg/kg剂量)。

实例4.APOC3过表达小鼠模型的产生和表征。

为了不使ApoC3 GalNAc共轭物在体内导致与啮齿动物APOC3基因不发生交叉反应的化合物被发现,使用了C57B1/6小鼠肝脏中人APOC3基因过表达系统。产生腺苷相关病毒血清型8(AAV8),其包裹在肝特异性TBG启动子下表达人类APOC3的AAV2载体基因组。进行模型表征研究以鉴定最佳条件,包括病毒基因组拷贝(GC)的数量和人类ApoC3在AAV转导的小鼠中高度持久表达所需的时间。

使用每只小鼠给予10

实例5.在APOC3过表达的小鼠模型中测试潜在的前导iRNA

一旦表征,将APOC3过表达的APOC3-AAV小鼠模型系统用于体内筛选基于其体内的AD-57553、AD-57547和AD-58924的筛选,其鉴定基于体外效力。对于单次高剂量筛选实验,先前注射10

选择AD-57553进行剂量反应和多剂量研究中的进一步体内测试。对于剂量反应实验,先前注射10

实例6.基于AD-57553的另外iRNA序列的生成和休内检测

从iRNA化学的最初SAR优化开始,通过引入2’F、2’OMe和5’P修饰的变化,基于AD-57553前导序列产生了10个另外iRNA序列。另外的iRNA呈现于以下表8和表9中。

在APOC3-AAV小鼠中检测另外的序列抑制APOC3蛋白表达的能力。具体而言,先前注射了10

实例7.在APOC3过表达的小鼠模型中测试新的前导iRNA

选择AD-57553、AD-65696、AD-65703和AD-65704进行后续研究,以测试氟含量和乙烯基磷酸酯对iRNA试剂抑制APOC3蛋白体内表达的能力的影响。上述表9示出了AD-57553、AD-65696、AD-65703和AD-65704的修饰序列,下表10包含每条链中存在的修饰的简要说明。

在APOC3-AAV小鼠APOC3过表达模型系统中测试了iRNA在体内抑制人APOC3蛋白表达的能力。对于单次剂量筛选研究,先前注射了10

AD-57553、AD-65696、AD-65699、AD-65703和AD-65704用于剂量反应和多剂量研究中的进一步体内测试。对于剂量反应实验,先前注射了10

0.3mg/kg、1mg/kg和3mg/kg剂量的时间进程分别示出在图12A、12B和12C中。图12A-C中的数据表明,每个测试的iRNA在0.3mg/kg剂量下能够相对于给药前测量抑制APOC3蛋白的表达高达50%。数据还表明,不含2’F修饰的AD-65699在1mg/kg和3mg/kg剂量下,在抑制APOC3的表达方面比其他测试的iRNA效力低。数据进一步显示,在给予动物的3mg/kg剂量的AD-57553、AD-65696、AD-65703和AD-65704之后,达到相对APOC3水平降低94%。APOC3水平的这种敲低在最后一次给药后持续至少3周。两种测试的iRNA、AD-65696和AD-65704能够在最后一次给药后至少5周内维持约80%的APOC3蛋白抑制。

在单次剂量滴定研究中使用APOC3过表达系统APOC3-AAV小鼠模型中测试了所选前导序列之一(AD-65704),其含有有义和反义链上的6个2’F修饰。对于剂量筛选实验,先前注射10

对于剂量滴定实验,先前注射了10

在该实施例中呈现的结果(图10-14)表明,低氟含量的iRNA(AD-65703和AD-65704)在作为单次3mg/kg剂量给药时APOC3的约80%的敲低持续至少30天(见图10)。每两周施用四次3mg/kg剂量,达到高达94%的APOC3水平降低,以及超过90%的敲低持续至少3周(见图12C)。

具有超低氟含量的iRNA(AD-65698)的结果表明,每两周施用四个剂量的3mg/kg,该iRNA能够实现高达83%的敲低,以及75%的敲低可在最后一次给药后持续3周(见图12C)。没有氟含量的iRNA(AD-65699)的结果表明,单次剂量为3mg/kg,该iRNA能够实现非常短暂的敲低。每两周施用四个3mg/kg剂量可以将敲低增加至高达50%,APOC3水平在施用最终剂量后2周内恢复至基线(见图12C)。

在反义链的5’上加入VP导致iRNA抑制APOC3表达的能力升高。在单次3mg/kg剂量的含VP的AD-65696后观察到的APOC3的94%敲低显著,与没有VP的亲本iRNA AD-57553观察到的约80%的敲低相比(参见图10)。AD-65696的多剂量实验导致施用3mg/kg时的APOC3的敲低高达99%,施用1mg/kg时的敲低为约80%,施用0.3mg/kg剂量时的敲低为>50%(参见图12A-C)。

实例8.鉴定与兔APOC3交叉反应的iRNA

分析表7所示的iRNA试剂与兔APOC3交叉反应的能力。根据对兔APOC3的错配次数,确定AD-58911、AD-58924、AD-58922和AD-58916与兔APOC3交叉反应。

修饰四个兔交叉反应序列以在有义链和反义链上含有总共10个2’F修饰,得到iRNA AD-67221、AD-67222、AD-67223和AD-67224。AD-67221、AD-67222、AD-67223和AD-67224的未修饰和修饰的序列分别呈现于下表11A和11B中。

使用APOC3过表达的APOC3-AAV小鼠模型系统,在单次剂量研究中测试这些iRNA。先前注射了10

实例9.测试乙烯基磷酸酯修饰的影响

本研究的目的是测试乙反义链上烯基磷酸酯(VP)和2’F修饰对iRNA抑制APOC3表达能力的影响。研究中使用的iRNA总结在下表12中。

iRNA试剂AD-65698和AD-66239具有相同的有义链但不同的反义链。类似地,双链体AD-65701和AD-66240具有相同的有义链,但不同的反义链。iRNA试剂AD-65704和AD-66241含有相同的有义链,但不同的反义链。AD-65698、AD-65701和AD-65704的反义链相同,并且含有含硫代磷酸酯的四个核苷酸和含2’-氟代修饰的两个核苷酸。AD-66239、AD-66240和AD-66241的反义链相同,并且含有含硫代磷酸酯的四个核苷酸,含2’-氟代修饰和在反义链的5’端处的一个乙烯基磷酸酯的9个核苷酸。

先前注射了10

结果表明,反义链上的VP修饰与有义链的低氟含量的混合和匹配导致了相似的活性升高,然而,没有VP修饰不能通过有义链与反义链的配对来改善持续时间。

实例10.基于AD-65704的另外iRNA序列的休内检测

AD-65704化学的SAR优化产生10个另外的iRNA序列(表13)。

使用APOC3过表达的APOC3-AAV小鼠模型系统,在单次剂量研究中测试这些iRNA。简言之,在注射具有10

实例11.iRNA试剂在非人类灵长类动物体内检测

基于实例10中描述的结果,选择三种iRNA试剂(AD-65704、AD-69535和AD-69541)用于在非人类灵长类中进行评估。

在食蟹猴中进行单次和多次给药实验。在一组实验中,在第1天,野生雄性食蟹猴(n=3)皮下施用单次每周剂量为1mg/kg剂量的AD-65704,或者野生雄性食蟹猴(n=3)在第1、8、15、22、29、36、43和50天在皮下施用一周一次的1mg/kg剂量的AD-65704。在第-7、-1、1、8、11、15、22、29、36、43、57、64和71天收集血清。通过ELISA测定食蟹猴ApoC3蛋白的水平。在第-7、12、30和64天进行肝脏活检,并且测定ApoC3 mRNA的水平。单次剂量研究的结果在图18A和图18B中进行了研究,并证明每周一次施用1mg/kg的AD-65704可以使总血清ApoC3降低>80%,而且总ApoC3蛋白降低高达50%(18B)。数据还表明,与给药前水平相比,每周一次施用1mg/kg的AD-65704使肝ApoC3 mRNA降低了60%。如图18C所示,每周一次的1mg/kg的AD-65704,相对于给药前水平,ApoC3mRNA的水平降低了95%。

在另一组实验中,在第1天,野生雄性食蟹猴(n=3)皮下施用单周剂量在1mg/kg剂量的AD-65704、AD-69535或AD-69541。在第-7天、第-1天、第1天、第8天、第11天、第15天、第22天、第29天和第36天收集血清。通过ELISA测定食蟹猴ApoC3蛋白的水平。在第-7、12、30和64天进行肝脏活检,测定ApoC3 mRNA的水平。数据表明,测试的所有三种iRNA试剂的单次1mg/kg剂量将ApoC3蛋白水平降低至基线水平(ED

在食蟹猴中用AD-65704、AD-69535和AD-69541进行了另外的多剂量研究。在第1天,野生雄性食蟹猴皮下施用单独的1mg/kg剂量的AD-65704、AD-69535或AD-69541,并在第36天后皮下施用单次3mg/kg剂量的相同试剂。N=3只/组。在第-7、-1、1、8、11、15、22、29、36、43、50、57、64和71天收集血清。通过ELISA测定食蟹猴ApoC3蛋白的水平。在第-7、12、30和64天进行肝脏活检,测定ApoC3 mRNA的水平。图20A表明,施用3mg/kg剂量的AD-65704或AD-69535相对于给药前水平(ED

等效物

本领域的普通技术人员仅仅使用常规实验将识别或能够确定在此描述的具体实施例和方法的多种等效物。这样的等效物旨在由以上权利要求书的范围所涵盖。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号