首页> 中国专利> 基于非侵入式负荷辨识的中央空调需求响应能力评测方法

基于非侵入式负荷辨识的中央空调需求响应能力评测方法

摘要

基于非侵入式负荷辨识的中央空调需求响应能力评测方法,基于线性规划算法,利用中央空调负荷特征量辨识设备运行状态;基于设备能耗模型,以中央空调满足制冷量同时消耗能源最少为优化目标,以各设备间的约束条件和各设备特征量的约束条件,构建中央空调负荷优化模型;以削峰率、可调容量、节电率对优化后的中央空调负荷需求响应能力进行评测。通过非侵入式负荷辨识算法,从监测数据中辨识出空调负荷,通过对空调负荷优化控制,使中央空调达到能耗最小值,通过合理的评测,确定空调负荷需求响应能力,从电力系统角度出发实现对空调负荷的调控,从而解决中央空调的负荷优化和评测的问题。

著录项

说明书

技术领域

本发明涉及电力系统需求侧调度控制技术领域,更具体地,涉及基于非侵入式负荷辨识的中央空调需求响应能力评测方法。

背景技术

随着大城市人口的增长,城市中心的用电负荷持续增加且峰谷时段用电量差值明显。作为电力负荷的重要组成部分,商业用户域负荷日益引起社会的广泛关注。

商业用户域负荷的在线监测技术,有助于用户了解家庭内不同时段各电器设备的具体能耗情况,据此来制定合理的用电计划,完善能源消费结构,促进能源有效利用,减少家庭电费开支。现有技术中,电力负荷的在线监测分为传统的侵入式负荷监测和非侵入式负荷监测。相较于侵入式负荷监测,非侵入式负荷监测只需要在被监测系统电力入口的配电板处安装用电信息采集装置,通过采集该处所有用电设备总的用电信息,并运用合适的数学分析计算方法进行处理和分析,结合不同用电设备的负荷特性,就能辨识并细化系统内各个负荷用电信息以及其运行状态,从而得到负荷集群中单个负荷的种类和运行情况,进而根据各类需求侧负荷调控潜力进行合理调度,实现源荷两侧互动优化。

在商业负荷中,空调负荷占比大,具有一定的热存储能力,对用户的舒适度影响较小。在夏季,空调在用电高峰时段的负荷比重很大,是导致尖峰负荷形成的主要原因。对空调进行合理调控,可以丰富负荷控制手段,抑制系统负荷峰谷差,促进电力资源优化配置和可持续发展,保障电网安全稳定运行。

现有技术中,多数研究考虑的是分体式定频空调。单个定频空调负荷较小,不适合直接参与电网调度。同一区域内的空调负荷相对分散,需要一定聚合技术且要考虑每个空调用户的舒适度、用电习惯,统一调控难度大。而中央空调负荷相对集中,且单个空调负荷较大,可调度潜力大,因此研究重心逐渐偏向中央空调。如何合理控制中央空调负荷是一个难点。对于参加需求响应的资源,需要有一定的指标判断是否具备可调控潜力。其中,削峰率、可调容量、节电率为三个评估需求侧可控负荷削峰能力的重要指标。目前,还未有考虑空调运行原理的楼宇中央空调需求响应能力评测方法的研究。

发明内容

为解决现有技术中存在的不足,本发明的目的在于,提供一种基于非侵入式负荷辨识的中央空调需求响应能力评测方法,通过非侵入式负荷辨识算法,从监测数据中辨识出空调负荷,通过对空调负荷优化控制,使楼宇中央空调达到能耗最小值,通过合理的评测,确定空调负荷需求响应能力,从电力系统角度出发实现对空调负荷的调控,从而解决中央空调的负荷优化和评测的问题。

本发明采用如下的技术方案。

基于非侵入式负荷辨识的中央空调需求响应能力评测方法包括:

步骤1,采集中央空调实际运行设备的负荷特征量,利用负荷特征量分别计算中央空调实际运行设备的有功功率;

步骤2,利用中央空调实际运行设备的有功功率,基于线性规划算法,辨识每个采样点下各设备的运行状态;

步骤3,采集中央空调实际运行设备的额定特征量和能耗特征量;利用各设备的额定特征量和能耗特征量,基于中央空调运行原理,建立各设备的能耗模型;以中央空调满足制冷量同时消耗能源最少为优化目标,以各设备之间的制冷量与能耗约束条件和各设备的运行特征量约束条件共同作为优化约束条件,基于各设备的能耗模型构建中央空调负荷优化模型;

步骤4,利用中央空调负荷优化模型对中央空调负荷进行优化,以削峰率、可调容量、节电率为评价指标,对优化后的中央空调负荷需求响应能力进行评测。

优选地,步骤1中,中央空调实际运行设备包括:冷水机组、冷冻水泵、冷却水泵、冷却塔和空气处理单元。

步骤1中,负荷特征量包括:电压、电流、电压与电流之间的相位差。

利用中央空调实际运行设备的负荷特征量,以如下关系式计算得到中央空调实际运行设备的有功功率:

式中,P为中央空调实际运行设备的有功功率,

优选地,步骤2包括:

步骤2.1,利用中央空调实际运行设备的有功功率,与其它处于运行状态下的非中央空调设备的有功功率,按时序进行组合得到拟合总功率;基于电表量测结果得到全部运行设备的采样总功率;构建的负荷辨识目标函数满足如下关系式:

式中,

f为负荷辨识目标函数,表征拟合总功率与采样总功率的距离,

X为全部运行设备的总个数,其中全部运行设备包括中央空调实际运行设备和其它处于运行状态下的非中央空调设备;

步骤2.2,对负荷辨识目标函数建立约束条件,满足如下关系式:

式中,

步骤2.3,基于线性规划算法对负荷辨识目标函数的求解,辨识每个采样点下中央空调负荷各设备的运行状态。

优选地,步骤3中,中央空调实际运行设备的能耗模型包括:

(1)中央空调实际运行的第i个冷水机组的能耗模型,满足如下关系式:

式中,

(2)中央空调实际运行的第j个冷冻水泵的能耗模型,满足如下关系式:

式中,

其中,第j个冷冻水泵的扬程,满足如下关系式:

式中,

(3)中央空调实际运行的第

式中,

并且,全部空气处理单元冷冻水流量之和与全部冷冻水泵冷冻水流量之和相同,满足如下关系式:

式中,

(4)中央空调实际运行的第m个冷却水泵的能耗模型,满足如下关系式:

式中,

(5)中央空调实际运行的第n个冷却塔能耗模型,满足如下关系式:

式中,

并且,全部冷却塔的冷却水流量是通过全部冷却水泵的冷却水流量之和,满足如下关系式:

式中,

进一步,第i个冷水机组的负荷调整因数,满足如下关系式:

式中,

进一步,第i个冷水机组的温度调整因数,满足如下关系式:

式中,

优选地,步骤3中,各设备之间的制冷量与能耗约束条件包括:

(1)空气处理单元与冷水机组之间的约束条件,满足如下关系式:

式中,

(2)冷冻水泵与冷水机组之间的约束条件,满足如下关系式:

式中,

(3)冷水机组与冷却水泵之间的约束条件,满足如下关系式:

式中,

(4)冷却水泵与冷却塔之间的约束条件,满足如下关系式:

式中,

优选地,步骤3中,各设备的运行特征量约束条件包括:

(1)冷水机组的冷冻水供水温度的约束条件,满足如下关系式:

式中,

(2)冷水机组的冷冻水回水温度的约束条件,满足如下关系式:

式中,

(3)第j个冷冻水泵的冷冻水流量的约束条件,满足如下关系式:

式中,

(4)第m个冷却水泵的冷却水流量的约束条件,满足如下关系式:

式中,

(5)第k个空气处理单元的风流量的约束条件,满足如下关系式:

式中,

(6)第n个冷却塔的风流量的约束条件,满足如下关系式:

式中,

(7)第k个空气处理单元的空气压力的约束条件,满足如下关系式:

式中,

(8)第j个冷冻水泵的扬程的约束条件,满足如下关系式:

式中,

优选地,步骤3中,中央空调负荷优化模型,满足如下关系式:

式中,

优选地,步骤4包括:

步骤4.1,利用中央空调负荷优化模型对中央空调负荷进行优化,即对中央空调实际运行设备的各能源消耗量进行优化计算;

步骤4.2,以如下关系式表示的削峰率指标,计算优化后的中央空调负荷的削峰能力:

式中,

步骤4.3,以如下关系式表示的可调容量指标,计算优化后的中央空调负荷的可调能力:

式中,

步骤4.4,以如下关系式表示的节电率指标,计算优化后的中央空调负荷的节电能力;

式中,

本发明的有益效果在于,与现有技术相比:

1、本发明采用非侵入式负荷辨识算法,采集所有负荷的用电数据,并对数据归一化处理。对量测数据采用线性规划方法进行负荷辨识,采用GAMS中的CPLEX求解器,输出辨识出的空调负荷曲线。

2、本发明建立中央空调负荷优化模型,目标函数为满足特定条件下的制冷量的同时,消耗的能源最少。该模型为非线性规划模型,能够直接采用GAMS中BARON求解器进行建模求解,简化了建模过程,减少了计算时间。

3、本发明提出削峰率、可调容量、节电率三个需求响应能力评估指标,对中央空调负荷调控能力进行评估,证明空调负荷具备削峰能力,可以有效缓解局部时间段出现的电力供需矛盾,改善夏季电网负荷特性,实现电网稳定、安全、经济地运行。

附图说明

图1为本发明基于非侵入式负荷辨识的中央空调需求响应能力评测方法的流程图;

图2为本发明一实施例中夏季室外温度和冷负荷的示意图;

图3为本发明一实施例中负荷分解的示意图;

图4为本发明一实施例中冷冻水流量和风流量的示意图;

图5为本发明一实施例中优化前后各设备能耗的对比图;

图6为本发明一实施例中优化前后可调容量的示意图。

具体实施方式

下面结合附图对本申请作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本申请的保护范围。

如图1,基于非侵入式负荷辨识的中央空调需求响应能力评测方法包括:

步骤1,采集中央空调实际运行设备的负荷特征量,利用负荷特征量分别计算中央空调实际运行设备的有功功率。

具体地,步骤1中,中央空调实际运行设备包括:冷水机组、冷冻水泵、冷却水泵、冷却塔和空气处理单元。

步骤1中,负荷特征量包括:电压、电流、电压与电流之间的相位差。

利用中央空调实际运行设备的负荷特征量,以如下关系式计算得到中央空调实际运行设备的有功功率:

式中,P为中央空调实际运行设备的有功功率,

本优选实施例中,中央空调实际运行设备的负荷特征量可以从稳态电流电压的波形图中提取。

步骤2,利用中央空调实际运行设备的有功功率,基于线性规划算法,辨识每个采样点下各设备的运行状态。

具体地,步骤2包括:

步骤2.1,利用中央空调实际运行设备的有功功率,与其它处于运行状态下的非中央空调设备的有功功率,按时序进行组合得到拟合总功率;基于电表量测结果得到全部运行设备的采样总功率;构建的负荷辨识目标函数满足如下关系式:

式中,

f为负荷辨识目标函数,表征拟合总功率与采样总功率的距离,

X为全部运行设备的总个数,其中全部运行设备包括中央空调实际运行设备和其它处于运行状态下的非中央空调设备;

步骤2.2,对负荷辨识目标函数建立约束条件,满足如下关系式:

式中,

步骤2.3,基于线性规划算法对负荷辨识目标函数的求解,辨识每个采样点下中央空调负荷各设备的运行状态。

本优选实施例中,通过GAMS软件中的CPLEX求解器对负荷辨识目标函数的求解。

步骤3,采集中央空调实际运行设备的额定特征量和能耗特征量;利用各设备的额定特征量和能耗特征量,基于中央空调运行原理,建立各设备的能耗模型;以中央空调满足制冷量同时消耗能源最少为优化目标,以各设备之间的约束条件和各设备特征量的约束条件共同作为优化约束条件,基于各设备的能耗模型构建中央空调负荷优化模型。

具体地,步骤3中,中央空调实际运行设备的能耗模型包括:

(1)中央空调实际运行的第i个冷水机组的能耗模型,满足如下关系式:

式中,

进一步,第i个冷水机组的负荷调整因数,满足如下关系式:

式中,

进一步,第i个冷水机组的温度调整因数,满足如下关系式:

式中,

(2)中央空调实际运行的第j个冷冻水泵的能耗模型,满足如下关系式:

式中,

本优选实施例中,对于

其中,第j个冷冻水泵的扬程,满足如下关系式:

式中,

(3)中央空调实际运行的第

式中,

本优选实施例中,对于

并且,全部空气处理单元冷冻水流量之和与全部冷冻水泵冷冻水流量之和相同,满足如下关系式:

式中,

可以理解的是,全部冷冻水泵冷冻水流量之和就是全部空气处理单元冷冻水流量之和,体现出空调运行时全部冷冻水泵冷冻水流量的平均分配特性,这样的考虑基本符合实际运行情况。

(4)中央空调实际运行的第m个冷却水泵的能耗模型,满足如下关系式:

式中,

(5)中央空调实际运行的第n个冷却塔能耗模型,满足如下关系式:

式中,

并且,全部冷却塔的冷却水流量是通过全部冷却水泵的冷却水流量之和,满足如下关系式:

式中,

具体地,步骤3中,各设备之间的制冷量与能耗约束条件包括:

(1)空气处理单元与冷水机组之间的约束条件,满足如下关系式:

式中,

(2)冷冻水泵与冷水机组之间的约束条件,满足如下关系式:

式中,

(3)冷水机组与冷却水泵之间的约束条件,满足如下关系式:

式中,

(4)冷却水泵与冷却塔之间的约束条件,满足如下关系式:

式中,

具体地,步骤3中,各设备的运行特征量约束条件包括:

(1)冷水机组的冷冻水供水温度的约束条件,满足如下关系式:

式中,

(2)冷水机组的冷冻水回水温度的约束条件,满足如下关系式:

式中,

(3)第j个冷冻水泵的冷冻水流量的约束条件,满足如下关系式:

式中,

(4)第m个冷却水泵的冷却水流量的约束条件,满足如下关系式:

式中,

(5)第k个空气处理单元的风流量的约束条件,满足如下关系式:

式中,

(6)第n个冷却塔的风流量的约束条件,满足如下关系式:

式中,

(7)第k个空气处理单元的空气压力的约束条件,满足如下关系式:

式中,

(8)第j个冷冻水泵的扬程的约束条件,满足如下关系式:

式中,

可见,各设备之间的约束条件是一种等式关系的约束,而各设备特征量的约束条件是一种不等式关系的约束。

具体地,步骤3中,中央空调负荷优化模型,满足如下关系式:

式中,

步骤4,以削峰率、可调容量、节电率为评价指标,利用中央空调负荷优化模型对中央空调负荷需求响应能力进行评测。

具体地,步骤4包括:

步骤4.1,利用中央空调负荷优化模型对中央空调负荷进行优化,即对中央空调实际运行设备的各能源消耗量进行优化计算;

本优选实施例中,中央空调负荷优化模型是非线性规划模型,能够直接采用GAMS中BARON求解器进行求解。

步骤4.2,以如下关系式表示的削峰率指标,计算优化后的中央空调负荷的削峰能力:

式中,

削峰率是电网侧的重要参数,削峰有利于降低峰值负荷,从而降低发电机组和输配电网络的投资成本,并提高电源的安全性和可靠性。因此,以削峰率为中央空调需求响应能力的测评指标,对运行调控具有直观的指导意义。

步骤4.3,以如下关系式表示的可调容量指标,计算优化后的中央空调负荷的可调能力:

式中,

可调容量也是电网侧的重要参数,体现出中央空调能耗的减少量即为电力系统可调控容量,因此也是系统运行调控的重要指导数据。

步骤4.4,以如下关系式表示的节电率指标,计算优化后的中央空调负荷的节电能力;

式中,

实施例1。

以一幢商业楼宇的中央空调为具体研究对象,进一步说明本发明提出的基于非侵入式负荷辨识的中央空调需求响应能力评测方法。

该商业楼宇为五层楼的购物中心,中央空调运行时间为上午10:30至晚上21:00。时间间隔为15分钟,室内温度保持在25℃左右。该中央空调系统包括3个冷水机组、5个冷冻水泵、14个空气处理单元、5个冷却水泵和10个冷却塔,具体设备参数见表1。

表1中央空调设备参数

夏季室外温度和冷负荷的数据见图2。该幢楼宇除中央空调负荷外,还包含照明设备和其他负荷,对这三种负荷,根据稳态有功功率的测量数据建立典型负荷特征数据库。其中,中央空调属于连续变状态设备,用离散化方法将连续变状态分为典型的五种工作状态,而照明设备和其他负荷均属于开/关二状态设备,包括两种工作状态,具体数据库见表2。

表2典型负荷特征数据库

设置22个采样点,通过非侵入式负荷分解算法将总负荷分解为中央空调、照明设备、其他负荷,负荷分解结果见图3。

采用优化模型后,空气处理单元(AHUs)的风扇风流量、冷冻水泵水流量的优化结果见图4。冷冻水侧调节和空气侧调节在上午11:00之后进行,这是因为局部水流量变化主要取决于冷负荷总量的变化。为了实现节电,关闭了两个冷冻水泵。

各设备在优化前后的能耗见图5。冷水机组和冷却塔能耗上升,泵和空气处理单元的能耗降低,总体优化后的中央空调能耗降低,证明优化模型的有效性。

可调容量见图6。用削峰率、可调容量、节电率三种指标评估该商业楼宇中央空调负荷参与需求响应能力。从图6中可以看出,冷负荷减小时可调容量增大。通过计算,削峰率为17.2%,说明该优化后的负荷可以实现削峰作用。节电率为8.66%,采用优化模型每天可以节省556.97kWh电能。

本发明的有益效果在于,与现有技术相比:

1、本发明采用非侵入式负荷辨识算法,采集所有负荷的用电数据,并对数据归一化处理。对量测数据采用线性规划方法进行负荷辨识,采用GAMS中的CPLEX求解器,输出辨识出的空调负荷曲线。

2、本发明建立中央空调负荷优化模型,目标函数为满足特定条件下的制冷量的同时,消耗的能源最少。该模型为非线性规划模型,能够直接采用GAMS中BARON求解器进行建模求解,简化了建模过程,减少了计算时间。

3、本发明提出削峰率、可调容量、节电率三个需求响应能力评估指标,对中央空调负荷调控能力进行评估,证明空调负荷具备削峰能力,可以有效缓解局部时间段出现的电力供需矛盾,改善夏季电网负荷特性,实现电网稳定、安全、经济地运行。

本发明申请人结合说明书附图对本发明的实施示例做了详细的说明与描述,但是本领域技术人员应该理解,以上实施示例仅为本发明的优选实施方案,详尽的说明只是为了帮助读者更好地理解本发明精神,而并非对本发明保护范围的限制,相反,任何基于本发明的发明精神所作的任何改进或修饰都应当落在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号