首页> 中国专利> 提升目标探测精度的方法、集成电路、无线电器件及电子设备

提升目标探测精度的方法、集成电路、无线电器件及电子设备

摘要

本申请公开了一种提升目标探测精度的方法、计算机设备、存储介质、集成电路、无线电器件及电子设备,涉及雷达信号处理技术领域。该提升目标探测精度的方法通过利用速度模糊倍数对目标物峰值进行补偿,并基于补偿后的目标物峰值数所获取的目标物数据作为真实目标物数据,相较于传统方式获取的目标物数据更加精准,尤其是针对目标物速度过大的场景,更能有效的提升目标探测的精度。

著录项

  • 公开/公告号CN113109779A

    专利类型发明专利

  • 公开/公告日2021-07-13

    原文格式PDF

  • 申请/专利权人 加特兰微电子科技(上海)有限公司;

    申请/专利号CN202110223973.1

  • 发明设计人 张小龙;

    申请日2021-03-01

  • 分类号G01S7/41(20060101);G01S7/40(20060101);

  • 代理机构44224 广州华进联合专利商标代理有限公司;

  • 代理人杜娟娟

  • 地址 201210 上海市浦东新区中国(上海)自由贸易试验区盛夏路666号、银冬路122号5幢地下1层1_10层901室

  • 入库时间 2023-06-19 11:49:09

说明书

本申请要求于2020年02月28日提交中国专利局、申请号为202010131027.X、发明名称为“雷达测速测距方法、装置、雷达系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。

技术领域

本申请涉及雷达信号处理技术领域,特别是涉及一种提升目标探测精度的方法、计算机设备、存储介质、集成电路、无线电器件及电子设备。

背景技术

目前,针对FMCW传感器,在利用二维快速傅里叶变换进行目标探测时,当目标物的速度过快时,很容易发生模糊问题(如速度模糊和/或距离模糊等),导致目标探测精度较低。

发明内容

基于此,有必要针对上述存在的目标探测精度较低的问题,提供一种提升目标探测精度的方法、计算机设备、存储介质、集成电路、无线电器件及电子设备。

在一个可选的实施例中,一种提升目标检测精度的方法,可包括:

基于接收到的回波信号,获取速度模糊倍数和目标物峰值数据;

基于所述速度模糊倍数对所述目标物峰值数据进行补偿;以及

基于补偿后的目标物峰值数获取目标物数据。

在该实施例中,通过利用速度模糊倍数对目标物峰值进行补偿,并基于补偿后的目标物峰值数所获取的目标物数据作为真实目标物数据,相较于传统方式获取的目标物数据更加精准,尤其是针对目标物速度过大的场景,更能有效的提升目标探测的精度。

可选的,所述方法还可包括:

预设速度阈值;

获取目标物速度;以及

判断所述目标物的速度是否大于所述预设阈值;

其中,若所述目标物的速度大于所述预设阈值,则基于所述速度模糊倍数对所述目标物峰值数据进行补偿,并基于补偿后的目标物峰值数获取目标物数据。

在该实施例中,通过预先判断目标物的速度是否大于预设速度阈值,再确定是否进行后续的补偿操作,以根据不同的应用场景采用相异的目标探测方法,继而可使得目标探测方式与应用场景需求相适应;即针对高速的应用场景,可利用速度模糊倍数进行补偿操作,进而有效降低目标物的高速度对于目标探测所产生的不利影响,提升目标探测的精度,而针对低速的应用场景,则可无需进行后续的补偿操作,直接采用传统的方式进行目标探测。

可选的,所述目标物数据可包括距离、速度、角度和形状等中的至少一种。

需要注意的是,若是获取目标物的角度、点云数据(如基于点云数据获取形状、姿态等)等时,则需要先对目标物的速度和/距离进行补偿操作。

可选的,所述基于接收到的回波信号,获取速度模糊倍数和目标物峰值数据,包括:

对所述回波信号进行模数转换(A/D)、采样(sample)、距离维傅里叶变换(1DFFT)、速度维度傅里叶变换(2D FFT)和恒虚警检测(CFAR),以获取所述速度模糊倍数和所述目标物峰值数据。

需要说明的是,针对FMCW传感器,基于传统信号处理的流程,在CFAR与DOA(波达方向估计)之间进行本申请实施例中的补偿操作。

可选的,所述基于所述速度模糊倍数对所述目标物峰值数据进行补偿,包括:

基于速度维傅里叶变换输入数据的采样间隔获取补偿系数;

基于所述补偿系数和所述速度模糊倍数获取补偿量;以及

基于所述补偿量对所述目标物峰值数据进行补偿。

可选的,所述基于所述补偿系数和所述速度模糊倍数获取补偿量,包括:

基于所述补偿系数、所述速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔来获取所述补偿量。

可选的,所述基于速度维傅里叶变换输入数据的采样间隔获取补偿系数,包括:

基于扫频带宽、窗函数的大小、傅里叶变换的点数、扫频中心频点、采样率和所述速度维傅里叶变换输入数据的采样间隔获取所述补偿系数。

可选的,当基于补偿后的目标物峰值数获取目标物的距离时,所述目标物峰值数据包括距离因子,所述补偿量包括距离补偿量,所述补偿系数包括距离补偿系数,所述窗函数的大小包括速度维窗函数的大小,所述傅里叶变换的点数包括距离维窗函数的点数;所述基于扫频带宽、窗函数的大小、傅里叶变换的点数、扫频中心频点、采样率和所述速度维傅里叶变换输入数据的采样间隔获取所述补偿系数,包括:

基于所述扫频带宽、所述速度维窗函数的大小、所述距离维傅里叶变换的点数、所述扫频中心频点、所述采样率和所述速度维傅里叶变换输入数据的采样间隔获取所述距离补偿系数;

其中,基于所述距离补偿系数和所述速度模糊倍数获取所述距离补偿量,并基于所述距离补偿量对所述目标物峰值数据的距离因子进行补偿,以用于获取所述目标物的距离。

可选的,当基于补偿后的目标物峰值数获取目标物的速度时,所述目标物峰值数据包括速度因子,所述补偿量包括速度补偿量,所述补偿系数包括速度补偿系数,所述窗函数的大小包括距离维窗函数的大小,所述傅里叶变换的点数包括速度维窗函数的点数;所述基于扫频带宽、窗函数的大小、傅里叶变换的点数、扫频中心频点、采样率和所述速度维傅里叶变换输入数据的采样间隔获取所述补偿系数,包括:

基于所述扫频带宽、所述距离维窗函数的大小、所述速度维傅里叶变换的点数、所述扫频中心频点、所述采样率和所述速度维傅里叶变换输入数据的采样间隔获取所述速度补偿系数;

其中,基于所述速度补偿系数和所述速度模糊倍数获取所述速度补偿量,并基于所述速度补偿量对所述目标物峰值数据的速度因子进行补偿,以用于获取所述目标物的速度。

本申请实施例还提供了一种计算机设备,可包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现本申请实施例中任一项所述的方法的步骤。

本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一项所述的方法的步骤。

本申请实施例还提供了一种集成电路,可包括:

信号收发通道,用于发射无线电信号,以及接收所述无线电信号被目标物回反射所形成波信号;

信号处理模块,用于基于如本申请实施例中任意一项所述的方法获取目标物数据。

可选的,所述信号处理模块包括:

信号处理单元,用于基于所述回波信号获取速度模糊倍数和目标物峰值数据;

补偿单元,用于基于所述速度模糊倍数对所述目标物峰值数据进行补偿;以及

数据处理单元,用于基于补偿后的目标物峰值数获取目标物数据。

可选的,所述无线电信号为毫米波信号。

可选的,所述集成电路为AiP(Antenna in Package,即封装天线)芯片或AoC(Antenna on Chip,即片上天线)芯片。

本申请实施例还提供了一种无线电器件,可包括:

承载体;

如本申请实施例中任意一项所述集成电路,设置在所处承载体上;以及

天线,设置在所述承载体上,或者与所述集成电路集成为一体器件形成AiP或AoC结构,用于发收无线电信号。

本申请实施例还提供了一种电子设备,包括:

设备本体;以及

设置于所述设备本体上的本申请实施例中所述的无线电器件;

其中,所述无线电器件用于目标检测和/或通信。

附图说明

图1为本申请实施例提供的一种雷达系统的示意图;

图2为本申请实施例提供的一种集成电路的示意图;

图3为本申请实施例提供的一种提升目标探测精度的方法的流程图;

图4为本申请实施例提供的一种chirp信号波形示意图;

图5为本申请实施例提供的一种CFAR结果示意图;

图6为本申请实施例提供的一种速度补偿值的计算方法的流程图;

图7为本申请实施例提供的一种距离补偿值的计算方法的流程图;

图8为本申请实施例提供的另一种获取补偿后的速度因子的方法的流程图;

图9为本申请实施例提供的另一种提升目标探测精度的方法的流程图;

图10为本申请实施例提供的一种提升目标探测精度的装置的模块图。

具体实施方式

为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。

本实施例提供的提升目标探测精度的方法,可以适用于各种传感系统中。

下面就以FMCW雷达为例,对本申请的相关技术内容进行详细说明,但需要说明的是,本申请所记载的内容并不局限于雷达产品,也适用于其他一切能够目标探测传感器中。

目前,调频连续波雷达FMCW(英文:Frequency Modulation Continuous Wave,简称:FMCW)既可测距又可测速,并且在近距离测量上的优势日益明显,因此被广泛地用于车辆避障。

FMCW雷达测速测距的基本原理是:利用发射天线发射无线电信号(即发射信号)对检测区域进行目标探测,发射信号被目标物反射形成回波信号,然后接收天线接收上述的回波信号,信号处理模块对该回波信号进行混频得到中频信号,并继续模数转换、采样、距离维傅里叶变换(即1D FFT)、速度维傅里叶变换(即2D FFT)、恒虚警检测(即CFAR)、波动方向估计(即DOA)等操作,进而得到目标的距离、速度、角度等信息,并可根据所检测到的目标信息(即目标物数据)进行后续的点云成像、活体体征检测及监控等应用。

如图1所示,该FMCW雷达可包括信号产生器F,信号产生器用于合成电磁波信号,雷达系统的发射端包括发射天线Tx,接收端包括接收天线Rx,发射天线Tx将发射信号以电磁波的形式发射出去,电磁波在传播的过程中,遇到目标物后,会被目标物反射回来,该反射回来的电磁波可以称为回波信号,雷达系统的接收天线Rx可以接收该回波信号。雷达系统还包括混频器mixer,混频器mixer中可以采用发射信号对接收到的回波信号进行混频,得到混频信号。然后基于上述FMCW雷达测速测距的基本原理测量目标物的速度和距离等参数。

然而,上述测速测距方法,计算出的目标物的速度以及目标物到雷达的距离的精度较低。

为了解决上述技术问题,本申请实施例提供了一种提升目标探测精度的方法、计算机设备、存储介质、集成电路、无线电器件及电子设备,下面,首先对本申请实施例提供的提升目标探测精度的方法所涉及到的实施环境进行简要说明。

本申请实施例提供的提升目标检测精度的方法可以适用于如图2所示的集成电路中,该集成电路可包括信号收发通道201和信号处理模块202等,信号收发通道201可用于发射无线电信号(如毫米波信号、太赫兹信号等),以及接收无线电信号被目标物回反射所形成波信号,而信号处理模块202则可用对回波信号进行信号处理以实现本申请任一实施例所阐述的方法进而获取目标物数据。

可选的,上述的信号处理模块202可包括信号处理单元2021、补偿单元2022和数据处理单元2023等,信号处理单元2021可用于基于回波信号获取速度模糊倍数和目标物峰值数据等,补偿单元2022则可用于基于速度模糊倍数对目标物峰值数据进行补偿,而数据处理单元2023则可用于基于补偿后的目标物峰值数获取目标物数据。

可选的,上述的集成电路可为不包含天线结构的芯片结构,也可为集成有天线的结构(如AiP(英文:Antennas in Package,简称:AiP)芯片或AoC(英文:Antenna on Chip,简称:AoC)芯片等),上述无线电信号可以为毫米波信号。

上述集成电路,可以采用统一的数字控制器通过数字控制接口与片上系统的数字功能模块连接,再通过配置模块和状态机实现对片上系统中数字功能模块运行状态的统一配置管理,提高了集成电路中片上系统的运行控制效率。

具体地,在该集成电路中,还可以包括其他数字电路、数字功能模块以及运行控制设备,各类数字电路为集成电路的基础构成,不同的数字电路可以实现集成电路的不同功能,数字功能模块用于检测各个数字电路工作是否正常,运行控制设备可以对数字功能模块进行统一的配置管理,运行控制设备中的数字控制器可以通过数字控制接口向数字功能模块发送进行功能检测的控制信号,配置模块中存储有配置信息与状态信息,配置信息可以由外部获取,状态机用于控制集成电路的工作流程,状态机可以读取配置模块中存储的配置信息,对控制数字控制器产生相应的控制信号输出给数字功能模块,以实现控制数字功能模块对各个数字电路进行检测。

在一种可选的实现方式中,本实施例提供的提升目标探测精度的方法,可以适用于无线电器件,该无线电器件包括:承载体;如上述实施例所述的集成电路,该集成电路设置在承载体上;天线,设置在承载体上,用于发收无线电信号,其中天线还可集成于上述集成电路的封装中形成AiP结构中,也可天线集成于芯片上形成片上天线AoC结构,承载体则可以为印刷电路板PCB等。

在一种可选的实现方式中,本申请还提供一种设备,包括:设备本体;以及设置于设备本体上的如上述实施例的无线电器件;其中,无线电器件用于目标检测和/或通信。

具体地,在本申请的一个实施例中,无线电器件可以设置在设备本体的外部,在本申请的另一个实施例中,无线电器件还可以设置在设备本体的内部,在本申请的其他实施例中,无线电器件还可以一部分设置在设备本体的内部,一部分设置在设备本体的外部。本申请对此不作限定,具体视情况而定。需要说明的是,无线电器件可通过发射及接收信号实现诸如目标检测及通信等功能。

在一个可选的实施例中,上述设备本体可为智能交通运输设备(如汽车、自行车、摩托车、船舶、地铁、火车等)、安防设备(如摄像头)、智能穿戴设备(如手环、眼镜等)、智能家居设备(如电视、空调、智能灯等)、各种通信设备(如手机、平板电脑等)等,以及诸如道闸、智能交通指示灯、智能指示牌、交通摄像头及各种工业化机械手(或机器人)等,也可为用于检测生命特征参数的各种仪器以及搭载该仪器的各种设备。无线电器件则可为本申请任一实施例中所阐述的无线电器件,无线电器件的结构和工作原理在上述实施例中已经进行了详细说明,此处不在一一赘述。

为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。

请参考图3,其示出了本申请实施例提供的一种提升目标探测精度的方法的流程图,该提升目标探测精度的方法可以应用于图1所示的雷达系统中,如图3所示,该提升目标探测精度的方法可以包括以下步骤:

步骤301、基于接收到的回波信号,获取速度模糊倍数和目标物峰值数据。

FMCW雷达的发射天线发出的发射信号的电磁波为高频调频连续波,其频率随时间规律变化。该高频连续波一般为锯齿形、三角形等,本申请以锯齿形为例进行说明,每个调频周期T内的电磁波称为chirp(译文:啁啾),每个chirp的频率随时间线性增加。

FMCW雷达的接收天线接收的回波信号是目标物反射回来的电磁波。如图4所示,其示出了发射信号tx波形和回波信号rx波形。将发射信号tx与回波信号rx混频的过程可以是:对发射信号与回波信号进行混频处理,得到差频信号IF signal,该差频信号即混频信号,也可称为中频信号。

对混频信号进行数字采样,得到采样数据。可以将一个chirp上的采样数据存储为矩阵的行,例如有M个chirp,相应地,矩阵的行有M行,每个chirp采样点数为N,表示矩阵的列有N列,这样可以得到一个M×N的采样数据矩阵。

对于每个调频周期的chirp(即每一行),可以分别做N点FFT,即距离维傅里叶变换,再对M个chirp进行跨chirp做纵向的多普勒FFT,即速度维傅里叶变换,距离FFT(逐行)和多普勒FFT(逐列)的联合操作可视作每帧对应采样数据的二维FFT,二维FFT可用于获取目标物的距离和速度等参数。因此二维FFT的峰值位置可对应雷达前方目标的距离和速度。继续进行恒虚警检测(即CFAR)其结果可以如图5所示,其中,虚线表示对应关系,CFAR的峰值位置对应的峰值数据包括速度因子P

可选的,在进行上述的二维FFT及CFAR后,还可以获得以下数据:

扫频带宽B、距离维傅里叶变换的点数nfft1、速度维傅里叶变换的点数nfft2(也可认为是速度维FFT的size(L

需要说明的是,在本申请实施例的公式中,j为虚数单位,即

另外,在本申请实施例中,多普勒频移取余的余量f

在FMCW雷达中,由于是通过利用回波信号相对于发射信号的真实的多普勒频移f

而当f

步骤302、基于所述速度模糊倍数对所述目标物峰值数据进行补偿。

可选的,可先基于速度维傅里叶变换输入数据的采样间隔获取补偿系数,然后基于补偿系数和速度模糊倍数获取补偿量,并基于补偿量对所述目标物峰值数据进行补偿。

具体的,可基于补偿系数、速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔来获取补偿量。例如,可采用以下公式来获取补偿量:

Peak-comp=comp*(q+f

可选的,一般为对CFAR后获取的目标物峰值数据的速度因子K

可选的,距离因子补偿量的公式可为:

在一个可选的实施例中,可基于扫频带宽、窗函数的大小、傅里叶变换的点数、扫频中心频点、采样率和速度维傅里叶变换输入数据的采样间隔获取补偿系数。

可选的,当基于补偿后的目标物峰值数获取目标物的距离时,可基于扫频带宽、速度维窗函数的大小、距离维傅里叶变换的点数、扫频中心频点、采样率和速度维傅里叶变换输入数据的采样间隔获取该距离补偿系数。

例如,可采用以下的公式获取距离补偿系数:

可选的,当基于补偿后的目标物峰值数获取目标物的速度时,可基于扫频带宽、距离维窗函数的大小、速度维傅里叶变换的点数、扫频中心频点、采样率和速度维傅里叶变换输入数据的采样间隔获取速度补偿系数。

例如,可采用以下的公式获取距离补偿系数:

可选的,可用CFAR得到的速度因子P

步骤303、基于补偿后的目标物峰值数获取目标物数据。

其中,上述的目标物数据可包括距离、速度、角度和形状等中的至少一种。

例如,可采用以下的公式获取目标物的距离R:

相应的,可采用以下的公式获取目标物的速度v:

本申请实施例提供的提升目标探测精度的方法,在二维快速傅里叶变换及恒虚警检测之后,且在波达方向估计之前,通过利用速度模糊倍数对CFAR得到的速度因子和/或距离因子进行了补偿,并根据补偿后的速度因子和补偿后的距离因子,来确定目标物的速度和目标物到雷达的距离,进而能够有效提高目标减少所获取目标物的速度和/或距离的精度。

在一种可选的实现方式中,在根据速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔等分别确定速度补偿值和距离补偿值之前,需要判断速度模糊倍数是否大于0。当速度模糊倍数大于0时,表示存在速度模糊。而当速度模糊倍数等于0时,表示不存在速度模糊。

可选的,当速度模糊倍数等于0时,即不存在速度模糊,可以认为目标物处于低速运动状态,无需进行补偿。因此,确定速度补偿值和距离补偿值均为零。

可选的,当速度模糊倍数大于0时,即存在速度模糊,可以认为目标物处于高速运动状态,需要对速度进行校正补偿,因此,根据速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔等确定速度补偿值。

在另一个可选的实施方式中,也可通过预先设定速度阈值(也可认为是速度模糊阈值),并基于当前所获取的目标物速度值(或速度模糊倍数)来判断是否需要进行上述的补偿操作。即,若是所获取的目标物速度值(或速度模糊倍数)大于预先设定速度阈值(或速度模糊阈值),即可进行上述补偿操作;否则,则可不用进行补偿操作,如继续采用传统的信号处理流程来获取目标物数据。

本申请实施例中,根据速度模糊倍数确定是否需要对速度因子和/或距离因子进行补偿,当不需要进行补偿时,可以节省补偿步骤,从而提高雷达的运算效率。

在一种可选的实现方式中,如图6所示,当速度模糊倍数大于0时,根据速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔确定速度补偿值的过程可以包括以下步骤:

步骤601、获取速度补偿系数。

在一种可选的实现方式中,速度补偿系数可以是预先设置好的常数。

在另一种可选的实现方式中,获取速度补偿系数的过程可以是:获取速度维傅里叶变换的点数,根据速度维傅里叶变换的点数、扫频中心频点和采样率确定速度补偿系数。

可选的,本申请实施例中,还可采用如下公式来获取的速度补偿系数,即:

本申请实施例中,速度维傅里叶变换的点数nfft2可以认为是进行距离FFT的行数。采样率F

在另一种可选的实现方式中,在进行二维快速傅里叶变换之前,可以对采样数据在速度维和距离维分别进行乘窗操作。其中,可选的,速度维窗函数的大小可以设为win2size,距离维窗函数的大小可以设为win1size。

在乘窗操作下,速度补偿系数的表达式如下所示:

即可以将距离维窗函数的大小win1size、速度维傅里叶变换输入数据的采样间隔T、速度维傅里叶变换的点数nfft2、扫频中心频点f

步骤602、根据速度补偿系数、速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔确定速度补偿值。

可选的,本申请实施例中,速度补偿值的表达式可以如下所示:

即可以将速度补偿系数vel_comp、速度模糊倍数q、多普勒频移取余的余量f

可选的,本申请实施例中,速度补偿值的表达式可以根据混频信号的时域表达式确定。其中,发射信号和回波信号混频后的混频信号的时域表达式可以如下所示:

即通过对混频信号进行离散化数字采样,可确定速度补偿值的表达式。

本申请实施例中,通过根据速度维傅里叶变换的点数、扫频中心频点和采样率确定速度补偿系数。将速度维傅里叶变换的点数、扫频中心频点和采样率引入速度补偿值的确定过程中,可以提高速度补偿值的精度,提高了补偿后的速度因子的精度,因此可以提高根据速度因子确定的目标物的速度的精度。

在一种可选的实现方式中,如图7所示,当速度模糊倍数大于0时,根据速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔确定距离补偿值的过程可以包括以下步骤:

步骤701、获取距离补偿系数。

在一种可选的实现方式中,距离补偿系数可以是预先设置好的常数。

在一种可选的实现方式中,获取距离补偿系数的过程可以是:获取距离维傅里叶变换的点数,根据距离维傅里叶变换的点数、扫频中心频点和采样率确定距离补偿系数。

可选的,本申请实施例中,距离补偿系数的表达式可以如下所示:

即可以将速度维傅里叶变换输入数据的采样间隔T、距离维傅里叶变换的点数、扫频中心频点和采样率输入上式,计算出距离补偿系数。

在另一种可选的实现方式中,在进行二维快速傅里叶变换之前,可以对采样数据在速度维和距离维分别进行乘窗操作。其中,可选的,速度维窗函数的大小可以设为win2size,距离维窗函数的大小可以设为win1size。

在乘窗操作下,距离补偿系数的表达式可以如下所示:

即可以将速度维窗函数的大小win2size、速度维傅里叶变换输入数据的采样间隔T、距离维傅里叶变换的点数nfft1、扫频中心频点f

步骤702、根据距离补偿系数、速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔确定距离补偿值。

可选的,本申请实施例中,距离补偿值的表达式可以如下所示:

即可以将距离补偿系数rng_comp、速度模糊倍数q、多普勒频移取余的余量f

本申请实施例中,通过根据距离维傅里叶变换的点数、扫频中心频点和采样率确定距离补偿系数,将距离维傅里叶变换的点数、扫频中心频点和采样率引入距离补偿值的确定过程中,可以提高距离补偿值的精度,提高了补偿后的距离因子的精度,因此可以提高根据距离因子确定的目标物的距离的精度。

在一种可选的实现方式中,本申请实施例中,二维快速傅里叶变换包括速度维傅里叶变换,如图8所示,根据速度补偿值对速度因子进行补偿,得到补偿后的速度因子的过程还可以包括以下步骤:

步骤801、当速度因子大于或等于速度维傅里叶变换的点数的预设倍数时,将速度因子与速度维傅里叶变换的点数的差值作为第一速度因子。

可选的,该预设倍数大于0小于1。

可选的,速度维傅里叶变换的点数的预设倍数可以是0.5倍。

本申请实施例中,第一速度因子可以用P

步骤802、当速度因子小于速度维傅里叶变换的点数的预设倍数时,将速度因子作为第一速度因子。

当P

步骤803、根据速度补偿值对第一速度因子进行补偿,得到补偿后的速度因子。

可选的,根据速度补偿值对第一速度因子进行补偿的过程可以是:用第一速度因子减去速度补偿值得到补偿后的速度因子P=P

本申请实施例中,根据不同的判断条件确定不同的第一速度因子,以使得补偿后的速度因子可以更准确地反映目标物实际的运动速度信息,提高了补偿后的速度因子的精度,从而提高了确定的目标物的速度的精度。

在一种可选的实现方式中,当速度模糊倍数等于0时,速度补偿值和距离补偿值均为零,在这种情况下,根据补偿后的速度因子和补偿后的距离因子确定目标物的速度和距离的过程可以如图9所示,包括以下步骤:

步骤901、根据扫频中心频点确定速度粒度,根据速度粒度和速度因子确定目标物的速度。

其中,根据扫频中心频点确定速度粒度的过程包括:获取扫频中心频点为f

可选的,可根据速度粒度和速度因子确定目标物的速度,即V=Δv·P

步骤902、根据回波信号对应的扫频带宽确定距离粒度,根据距离粒度和距离因子确定目标物到雷达的距离。

根据回波信号对应的扫频带宽B确定距离粒度,其中,距离粒度的表达式可以表示为:

根据距离粒度和距离因子确定目标物到雷达的距离,即R=K

本申请实施例中,当速度模糊倍数等于0时,基于速度粒度和距离粒度通过简单的运算即可确定目标物的速度和目标物到雷达的距离,简化了运算过程,提高了雷达的运算反应速度。

请参考图10,其示出了本申请实施例提供的一种提升目标探测精度的装置的框图,该提升目标探测精度的装置可以配置在图1所示的实施环境中。如图10所示,该提升目标探测精度的装置可以包括确定模块1001、补偿值确定模块1002、补偿模块1003和速度和距离确定模块1004,其中:

确定模块1001,用于基于回波信号进行二维快速傅里叶变换和恒虚警检测,以得到目标物的峰值数据、速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔等,峰值数据可包括速度因子和距离因子;

补偿值确定模块1002,用于根据速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔分别确定速度补偿值和/或距离补偿值;

补偿模块1003,用于根据速度补偿值对速度因子进行补偿得到补偿后的速度因子,根据距离补偿值对距离因子进行补偿,得到补偿后的距离因子;

速度和距离确定模块1004,用于根据补偿后的速度因子和补偿后的距离因子确定目标物的速度和距离。

在本申请的一个实施例中,补偿值确定模块1002还用于当速度模糊倍数大于0时,根据速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔确定速度补偿值;根据速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔确定距离补偿值。

在本申请的一个实施例中,补偿值确定模块1002还用于获取速度补偿系数;根据速度补偿系数、速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔确定速度补偿值。

在本申请的一个实施例中,补偿值确定模块1002还用于根据速度维傅里叶变换的点数、扫频中心频点和采样率确定速度补偿系数。

在本申请的一个实施例中,补偿值确定模块1002还用于获取距离补偿系数;根据距离补偿系数、速度模糊倍数、多普勒频移取余的余量和速度维傅里叶变换输入数据的采样间隔确定距离补偿值。

在本申请的一个实施例中,补偿值确定模块1002还用于根据距离维傅里叶变换的点数、扫频中心频点和采样率确定距离补偿系数。

在本申请的一个实施例中,补偿值确定模块1002还用于当速度模糊倍数等于0时,确定速度补偿值和距离补偿值均为零;

相应的,速度和距离确定模块1004还用于根据扫频中心频点确定速度粒度,根据速度粒度和速度因子确定目标物的速度;根据回波信号对应的扫频带宽确定距离粒度,根据距离粒度和距离因子确定目标物到雷达的距离。

在本申请的一个实施例中,补偿模块1003还用于当速度因子大于或等于速度维傅里叶变换的点数的预设倍数时,将速度因子与速度维傅里叶变换的点数的差值作为第一速度因子;当速度因子小于速度维傅里叶变换的点数的预设倍数时,将速度因子作为第一速度因子;根据速度补偿值对第一速度因子进行补偿,得到补偿后的速度因子。

在本申请的一个实施例中,补偿模块1003还用于将第一速度因子减去速度补偿值得到补偿后的速度因子。

在本申请的一个实施例中,补偿模块1003还用于将距离因子减去距离补偿值得到补偿后的距离因子。

关于提升目标探测精度的装置的具体限定可以参见上文中对于提升目标探测精度的方法的限定,在此不再赘述。上述提升目标探测精度的装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于雷达系统中的处理器中,也可以以软件形式存储于雷达系统中的存储器中,以便于处理器调用执行以上各个模块对应的操作。

在一个实施例中,还提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。

在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号