首页> 中国专利> 一种基于车道线里程匹配的隧道内车辆定位方法

一种基于车道线里程匹配的隧道内车辆定位方法

摘要

本发明公开了一种基于车道线里程匹配的隧道内车辆定位方法。首先读入高精度车道线信息,在进入隧道前根据卫星定位的结果,按垂直方向匹配对应的车道线点,记为里程约束的起始点,之后根据车轮测速仪开始累积车辆里程,并利用激光雷达获得车辆距离隧道墙壁的距离,间接得到车辆距车道线的距离,再通过车辆总里程匹配车道线对应点,完成车辆的隧道内定位。应用本发明的测量方法在10km的隧道内车辆定位的绝对平面精度为1‑3m。

著录项

  • 公开/公告号CN113075676A

    专利类型发明专利

  • 公开/公告日2021-07-06

    原文格式PDF

  • 申请/专利权人 东南大学;

    申请/专利号CN202110317996.9

  • 申请日2021-03-25

  • 分类号G01S17/08(20060101);G01S17/931(20200101);G01S19/44(20100101);

  • 代理机构32206 南京众联专利代理有限公司;

  • 代理人蒋昱

  • 地址 210096 江苏省南京市玄武区四牌楼2号

  • 入库时间 2023-06-19 11:44:10

说明书

技术领域

本发明涉及车辆在隧道内的定位方法,尤其涉及一种基于车道线里程匹配的隧道内车辆定位方法。

背景技术

隧道内定位技术是现代定位技术中的难点,近年来人们对隧道内定位的需求与日俱增,隧道建设环境恶劣、情况复杂,隧道内的定位与导航对于实现安全生产和管理有重要意义,因此隧道单位成为了亟待解决的关键问题。

目前有多种针对隧道内定位的解决方案,在过去的几年里研究人员提出了多种隧道内定位的方案,如2016年王明东等人提出的基于UWB技术的隧道无线定位方法;王海英等人提出的基于ZigBee的隧道内定位方法;2018年梁壮等人提出了基于RSSI的隧道内定位方案,该类方案都需要在被定位设备上和隧道内安装硬件设备,并且在高速运行时还会有较大的误差,同时基站等硬件设备布置的成本较高,而在长距离的隧道中设置的话成本会很高。

另外还有一种方案就是基于卫星定位系统,该类方案中也有基于伪卫星的定位方式,该类方案依旧是通过设置地面基站,面对长距离隧道仍有成本较高的缺陷,但是另一类方案是通过惯导完成隧道内卫星信号缺失环境下的定位,该方案在短时间的卫星信号缺失的情况下,具有较高精度,并且成本也较低,不过在长距离的隧道环境下定位结果误差较大,无法实现较高精度的隧道内定位。

发明内容

发明目的:针对以上问题,本发明提出一种基于车道线里程匹配的隧道内车辆定位方法。利用车轮测速仪和激光雷达获取车辆在隧道内的里程信息,并与高精度车道线进行匹配,完成长距离隧道环境下的精确定位。

技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种基于车道线里程匹配的隧道内车辆定位方法,具体方法如下:

(1)读入高精度车道线信息;

由于在隧道内激光雷达已实现固定靠隧道右侧的距离测量,根据车辆前进方向,因此仅需读入每个隧道中的最右侧车道线即可确定车辆的位置;

(2)进入隧道前,根据卫星定位的结果,按垂直方向匹配对应的车道线点,记为里程约束的起始点;

进入隧道前车辆的卫星定位结果一般为高精度的RTK结果,如果RTK未成功固定,则取浮点解,并且匹配最近点的原则为,距车道线距离小于某个阈值,且前进方向上后一个车道线点距离逐渐增大,表明前一个点已是最近点,其中该阈值的大小根据车道宽度确定;

(3)根据车轮测速仪,开始累积计算车辆里程;

在获取起始点之后,根据车轮测速仪,开始累积计算车辆里程,累积方式为逐次累加里程计的编码器脉冲计数,假设某一时刻里程计的脉冲数累积为n,则此时累积的总里程为

S=n×l×(1+γ) (1)

式中,l表示车轮周长,先验值,单位m,γ表示车辆行进过程中的周长误差系数,其通过与GNSS RTK/INS联合解算实时估计而得;

(4)车辆进入隧道后通过激光雷达测量得到车辆距离右侧隧道壁的距离d

在隧道中测量时采用16线激光雷达,而在测量时使用两个不同仰角的激光束进行测量,消除这两项因素带来的误差,其计算的原理根据激光雷达测距原理且如下式(2);

其中l

当出现紧急停靠带时,激光雷达距离右侧墙壁距离会增大,所以激光雷达测得的隧道的宽度会突然增大,这时候就根据激光雷达测得的左右距离之和判断是否处于紧急停靠带附近,并根据激光雷达前一时刻测得的隧道宽度值db,和下式得到激光雷达距右侧墙壁距离的修正值;

dr=db-dl (3)

当出现大型车辆遮挡时,因为隧道宽度不会快速变窄,此时激光雷达测量的车辆与右侧墙壁距离会比真实值小,所以激光雷达测得的左右距离之和小于隧道宽度,根据下式求得车辆距离右侧墙壁的距离;

dr=db-dl (4)

(5)进入隧道后,按照总里程S匹配车道线对应点,同时激光雷达通过横向测距获得距离右侧隧道壁的距离dr,从而获得车辆在隧道中的位置信息:

在隧道内,通过里程计计算得到的总里程S匹配车道对应点,并且假设车道线距隧道壁的距离保持不变,实际会有较小的变化为Δd,则可获得车辆实时距车道线的距离

按总里程S匹配车道线对应点的方法为

式中,p1表示匹配到的前一个最近点点号,p2表示匹配到的后一个最近点点号;b表示车道线点间距,距离值固定为1m,p0表示起始点点号;

根据距离划分原则,可得对应垂直点pv的坐标为

式中,β=S-floor(S),floor(·)表示向下取整,得到垂直点pv的坐标后,即可根据车辆距离车道线的横向距离及pv点的方位角信息获得车辆点v的坐标(x

作为本发明进一步改进,步骤(1)所述读入高精度车道线信息,由于在隧道中激光雷达已实现固定靠隧道右侧的距离测量,根据车辆前进方向,因此仅需读入每个方向隧道中的最右侧车道线。

作为本发明进一步改进,步骤(2)所述,进入隧道前,需根据卫星定位的结果,即RTK结果,若RTK未成功固定则取浮点解,之后按垂直方向匹配对应的车道线点,记为里程约束的起始点,匹配最近点的原则为,距离车道线的距离小于10m,根据车道宽度定,且前进方向上后一个车道线点距离逐渐增大,表明前一个点已是最近点。

作为本发明进一步改进,步骤(3)所述方法根据车轮测速仪累积计算车辆里程,累积方式为逐次累加里程计的编码器脉冲计数。

作为本发明进一步改进,步骤(4)中所述的通过激光雷达测量车辆距离两侧隧道壁的距离,利用两根仰角较大的激光束进行测量,并且充分利用已知信息,在道路右侧出现紧急停靠带或车辆右侧被大型车辆遮挡的时候,通过前一时刻测得的隧道宽度和激光雷达到左侧隧道壁的距离,得到激光雷达到右侧隧道壁的距离。

作为本发明进一步改进,步骤(5)中所述的按总里程S匹配车道线对应点,并结合利用激光雷达测得的距隧道壁的距离,得到车辆距车道线的距离,最后完成车辆在隧道内的高精度定位。

有益效果:本发明提出了一种基于车道线里程匹配的隧道内车辆定位方法,在车辆进入隧道之前,通过卫星定位结果完成里程计起点的约束,在隧道中利用车轮测速仪和激光雷达获取车辆在隧道内的里程信息,并与高精度车道线进行匹配,完成长距离隧道环境下的精确定位,从而完成精确的隧道内定位。

附图说明

图1是本发明的技术方案流程图;

图2是激光雷达的测距原理图;

图3是防止应对紧急停靠带和激光雷达被遮挡的原理图;

图4是车道线就近点匹配原理图;

图5是依据车道线点计算车辆点坐标示意图。

具体实施方式

下面结合附图和实施例对本发明的技术方案作进一步的说明。

本发明所述的一种基于车道线里程匹配的隧道内车辆定位方法,具体方法如下:

(1)读入隧道的高精度车道线信息;

所述高精度车道线信息就是车辆即将驶入的隧道的车道线信息,该车道线信息是通过一系列离散点的信息拼接而成的,将每个点以117°为中央子午线、按3°带投影后的高斯平面坐标(分别为北向坐标和东向坐标)和每个点对应的方位角(北方为0°)表示;

(2)进入隧道前,根据卫星定位的结果,按垂直方向匹配对应的车道线点,记为里程约束的起始点;

其中车辆的卫星定位结果一般为高精度的RTK结果,如果RTK未成功固定,则取浮点解,并且匹配最近点的原则为,距离车道线距离小于某个阈值,且前进方向上后一个车道线点距离逐渐增大(表明前一个点已是最近点),其中该阈值的大小根据车道宽度确定;

(3)根据车轮测速仪,开始累积计算车辆里程;

在获取起始点之后,根据车轮测速仪,开始累积计算车辆里程,累积方式为逐次累加里程计的编码器脉冲计数,假设某一时刻里程计的脉冲数累积为n,则此时累积的总里程为

S=n×l×(1+γ)

式中,l表示车轮周长(先验值,单位m),γ表示车辆行进过程中的周长误差系数,其通过与GNSS RTK/INS联合解算实时估计而得。

(4)车辆进入隧道后通过激光雷达测量得到车辆距右侧隧道壁的距离d

因为在测试过程中,激光雷达安装高度较低,稍高的车辆都会遮挡激光雷达,所以需要使用仰角较大的激光束进行测量,并且车辆可能存在侧倾或是激光雷达安装不平整等原因,所以在隧道中测量时采用16线激光雷达,而在测量时使用两个不同仰角的激光束进行测量,消除这两项因素带来的误差,其计算的原理如下式和图1;

其中l

另外在隧道中还会存在大型车辆的遮挡和紧急停靠带的影响,其情况如下图2所示,因为车辆距离右侧车道线的距离是通过车辆距离右侧墙壁的距离推算得到的,且前提是假设右侧墙壁和车道线间距离恒定,这两种情况都影响到了计算车辆与右侧车道线的距离。因为隧道的宽度正常情况下不会急剧变化,所以通过激光雷达测得的左右距离之和可以判断出车辆处于图2中的哪一种环境,当出现紧急停靠带时,激光雷达距右侧墙壁距离会增大,所以激光雷达测得的隧道的宽度会突然增大,这时候就可以根据激光雷达测得的左右距离之和判断是否处于紧急停靠带附近,并根据激光雷达前一时刻测得的隧道宽度值db,和下式得到激光雷达距右侧墙壁距离的修正值。

dr=db-dl

当出现大型车辆遮挡时,因为隧道宽度不会瞬间变窄,此时激光雷达测量的车辆与右侧墙壁距离之会比真实值小,所以激光雷达测得的左右距离之和小于隧道宽度,而这时就可根据下式求得车辆距右侧墙壁的距离。

dr=db-dl

(5)进入隧道后,按照总里程S匹配车道线对应点,同时激光雷达通过横向测距获得距离隧道壁的距离dr,从而获得车辆在隧道中的位置信息:

在隧道内,通过里程计计算得到的总里程S匹配车道对应点,并且假设车道线距离隧道壁的距离保持不变(实际会有较小的变化)为Δd,则可获得车辆实时距离车道线的距离

如图3所示,按总里程S匹配车道线对应点的方法为

式中,p1表示匹配到的前一个最近点点号,p2表示匹配到的后一个最近点点号;b表示车道线点间距(本项目中其值固定为1m),p

根据距离划分原则,可得对应垂直点pv的坐标为

式中,β=S-floor(S),floor(·)表示向下取整。得到垂直点pv的坐标后,即可根据车辆距离车道线的横向距离及pv点的方位角信息获得车辆点v的坐标(x

在北京市西羊坊隧道进行了隧道内车辆定位测试实验,本次测试在隧道路段进行了往返共四次的实际测量实验,在10km隧道出口处通过与RTK固定节时间重合点的比较结果表明,其绝对精度为1-3m。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号