首页> 中国专利> 一种铁塔通信基站电费精准计量和控制电力成本的供电系统

一种铁塔通信基站电费精准计量和控制电力成本的供电系统

摘要

本发明涉及铁塔通信基站供电技术领域,公开了一种铁塔通信基站电费精准计量和控制电力成本的供电系统,该铁塔通信基站供电系统通过改变传统通信基站的电源供给结构及方式,有效结合风力发电机、后备锂电池组、后备铅酸蓄电池、UPS不间断电源以及公共电网对基站负载进行交互供电,按照用电高峰、低谷和平段梯次配置,以储能电池发电为主,市电为辅,并能分路单独计量各家运营商的设备用电,实现中国铁塔及运营商共享各方在用电上的节能降耗以及电费的精准测算和合理分摊,具有实际推广价值。

著录项

  • 公开/公告号CN113078680A

    专利类型发明专利

  • 公开/公告日2021-07-06

    原文格式PDF

  • 申请/专利权人 深圳市誉娇诚科技有限公司;

    申请/专利号CN202110457120.4

  • 发明设计人 彭建华;潘继雄;周幼华;

    申请日2021-04-26

  • 分类号H02J3/38(20060101);H02J3/32(20060101);H02J3/00(20060101);H02J7/00(20060101);H02J13/00(20060101);G01R11/56(20060101);G06Q30/02(20120101);G06Q50/06(20120101);

  • 代理机构44384 深圳市中科创为专利代理有限公司;

  • 代理人彭西洋;谢亮

  • 地址 518000 广东省深圳市龙岗区宝龙街道宝龙社区宝龙四路2号安博科技宝龙厂区2号厂房812

  • 入库时间 2023-06-19 11:44:10

说明书

技术领域

本发明涉及铁塔通信基站供电技术领域,特别涉及一种铁塔通信基站电费精准计量和控制电力成本的供电系统,适用于共享基站背景下各运营商电费精准分摊和节能降耗。

背景技术

目前,构建绿色通信机房,创新推广能源高效利用和新能源技术,提高风能、太阳能、新型蓄电池等新能源占比已成为国内各大电信运营商发展低碳经济,推进节能改造,实现节能减排目标的必经之路。同时,随着通信业务运营、持续的网络建设投资和铁塔互联网快速发展带来的冲击,电信运营商面临“成本增长过快,收入增长放缓”的压力,根据资料显示,仅中国联通每年需要缴纳的电费就超过百亿元,电费支出甚至超过了其员工薪酬福利的1/3。

自2014年中国铁塔公司成立后,国内三大电信运营商—中国移动、中国联通、中国电信的机房和通信铁塔都已经移交到铁塔公司,铁塔公司负责维护,三家运营商每年缴纳足额的租赁费和电费,以便减少电信行业内铁塔以及相关基础设施的重复建设,节省资本开支,优化现金使用,聚焦核心业务运营,提升市场竞争能力,加快转型升级。

然而,现阶段部分地区电网公司对各电信运营商的电费计量仍然按照平均分摊的原则进行结算,鉴于各运营商通信业务数据量相差较大,采用平均分摊的结算方法显然是不合理的,带来的后果就是各运营商对于电费的分摊比例和金额经常达不成一致意见,造成租赁各方的信任危机和内耗,因此提供一种按照电量使用比例分开计费的精准结算方法及供电系统具有迫切性和必要性。

在通信基站节能降耗技术层面,国内许多研究机构和学者分别提出了多种各式各样的新能源应用方案,而且各大运营商及设备厂家针对通信基站供电系统节能改造和新能源应用也做了大量尝试。专利CN105914870A提出了一种风光互补供电系统,采用太阳能、风能、锂离子电池及其它激活式电池共同为基站供电,但该方案是基于市电为主,风光储为补充的备用电源,平时通过市电整流逆变后为基站提供电源,风光发电为储能电池充电,只有在市电供电满足不了需求的情况下,储能电池才会开启为基站供电;专利CN201332283Y提出了一种用于无市电情况下的通信基站供电电源装置,采用太阳能发电机组、风力发电机组和内燃发电机组三种供电方式组合,在太阳能发电和风力发电不满足发电量的条件下才启动内燃发电机组,以达到降低发电运行成本的目的,这种供电方式适用于还没有完全普及220VAC公共电网的边远地区或山区,因为这些地区的基站主要采用内燃发电机组进行供电;专利CN103676817B提出了一种通信基站光电互补电源系统及其运作方法,通过引入太阳能光伏组件和锂离子电池实现与市电的自动有序切换,来达到节约市电投入和降低设备能耗的目的,该系统在保证基站负载供电的前提下,优先采用太阳能发电,同时为锂离子电池充电,而在市电停电且太阳能无法发电的条件下,锂离子电池再单独进行供电;另外,中国移动某分公司和爱默生网络能源有限公司提出了一种对原有通信基站供电系统进行节能改造的光电互补解决方案,在市电供电的基础上增加了太阳能供电,图1为中国移动某分公司基站电源光电互补系统节能改造方案拓扑图,如图1所示,该方案以太阳能优先供电,市电作为补充,提供“稳定”和“节能”两种工作模式,起到了节能减排的效果,通过试运行测试节能率在25%~30%之间,具有一定的代表性。

传统的基站供电系统配置仅仅是从保供电的角度,即供电的稳定可靠性方面来考虑和实施,并没有触及和规划到节能降耗和控制电力成本方面,显然不符合当前国家提出的节能减排和建设绿色机房的战略目标。近年来,随着风能、太阳能等清洁能源的飞速发展以及锂离子电池、燃料电池等储能电池核心技术的突破,太阳能发电、风力发电等新能源发电技术逐渐应用于通信基站的供电上,锂离子电池以其体积小、能量比和功率比高、循环寿命长、充电时间短、安全和无污染等优点,也正逐步地替换原来的铅酸蓄电池,成为基站直流备用电源的主流。

而前述所列的几种基站新能源应用方案从某种意义上说,改变了传统基站的电源供给结构及方式,一定程度上帮助电信运营商达成了节能降耗的目的,同时有效提高了基站供电系统的可靠性,但是在当前大力提倡节能减排,发展绿色电信的背景下,并没有彻底扭转基站高能耗、电费总量大、电费占运营支出和收入比例高的严峻事实。另外,前述几种应用方案并没有对各运营商的通信设备用电量进行精准测量,无法实现电费的准确分摊。

因此,如何同时有效推进中国铁塔及运营商共享各方在用电上的节能降耗,并准确、合理地分摊电费,是当前基础资源整合后在绿色节能方面面临的困境。基站供电系统要从根本上解决这一技术难题和商业痼疾,必须走高效、清洁、低碳、循环的绿色发展道路,有效利用太阳能、风能及储能蓄电池交互供电的纯绿色节能发电系统,同时结合基站总能耗数据计算出各运营商电费分摊系数,实现电费的精准分摊。

发明内容

本发明的主要目的是提出一种铁塔通信基站电费精准计量和控制电力成本的供电系统,旨在结合风力发电机、后备锂电池组、后备铅酸蓄电池、UPS不间断电源及公共电网进行交互供电,解决中国铁塔及运营商共享各方在用电上的节能降耗和电力成本控制,并精准计量及合理分摊电费。

为实现上述目的,本发明提出的铁塔通信基站电费精准计量和控制电力成本的供电系统,用于给基站负载供电,所述基站负载包括基站直流负载和基站交流负载,该铁塔通信基站供电系统包括风力发电机、公共电网、后备铅酸蓄电池、后备锂电池组、UPS不间断电源以及GPRS远传模块,所述公共电网依次与防雷空开、浪涌保护器、市电输入开关、单相电度表、整流开关、整流器、逆变器以及STS静态切换开关电连接,所述单相电度表通过一市电旁路开关与所述STS静态切换开关电连接,所述STS静态切换开关的一端通过一输出开关分别与所述基站交流负载和UPS不间断电源电连接,所述UPS不间断电源与所述基站直流负载电连接,所述风力发电机依次与整流滤波、升压直流变换电路、防反流二极管以及所述后备锂电池组电连接,所述整流器通过一直流断路器与所述后备锂电池组电连接,用于对所述后备锂电池进行充电,所述后备铅酸蓄电池与所述UPS不间断电源电连接,所述基站直流负载设有多个运营商供电支路,每一所述运营商供电支路均与一电量采集RTU电连接,所述后备锂电池组内设有电池管理系统BMS,所述电量采集RTU分别与所述电池管理系统BMS通信连接,所述单相电度表与所述电池管理系统BMS通信连接,所述电池管理系统BMS与所述GPRS远传模块数据连接,所述GPRS远传模块与网管中心通信连接,实现基站与网关中心后台数据库的数据信息交互,以及网管中心对基站的远程监控。

具体地,还包括充放电保护模组,所述充放电保护模组设置于所述后备锂电池组内,且所述充放电保护模组的一端与所述电池管理系统BMS电连接,所述充放电保护模组的另一端通过霍尔电流传感器与所述后备锂电池组电连接。

进一步地,所述电量采集RTU通过CAN总线与所述电池管理系统BMS通信连接。

进一步地,所述单相电度表通过RS485总线与所述电池管理系统BMS通信连接。

进一步地,所述电池管理系统BMS通过RS485总线与所述GPRS远传模块数据连接。

进一步地,所述GPRS远传模块通过无线通信和TCP/IP协议与网管中心的无线网关通信连接。

进一步地,所述风力发电机输出的电压大小范围为15Vac~100Vac。

采用本发明的技术方案,具有以下有益效果:

1、本发明提出的基站供电系统有效结合风力发电机、后备锂电池组、后备铅酸蓄电池、UPS不间断电源和公共电网对机房及通信负荷进行交互供电,按照用电高峰、低谷和平段梯次配置,以储能电池发电为主,市电为辅,极大降低电力运营成本,推进基站共享各方在用电上的节能降耗;

2、本发明提出的基站供电系统通过电量采集RTU分路计量各家运营商的设备用电,结合干路上单相电度表总电度数据,根据用电量和电费单价,即可计算出该站点每家运营商应该交纳的电费,实现电费的精准测算与合理分摊;

3、本发明提出的基站供电系统能通过BMS将站内各个电气设备和控制装置的运行数据及状态参数上传到GPRS远传模块,GPRS远传模块通过无线通信和TCP/IP协议再与网管中心的无线网关进行链接,最终实现基站到后台数据库的信息交互,以及网管中心对基站的远程监控功能。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。

图1为中国移动某分公司基站电源光电互补系统节能改造方案拓扑图;

图2为本发明提出的一种铁塔通信基站电费精准计量和控制电力成本的供电系统的框架结构示意图;

图3为本发明提出的一种铁塔通信基站电费精准计量和控制电力成本的供电系统的电气拓扑图。

本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。

另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。

本发明提出一种铁塔通信基站电费精准计量和控制电力成本的供电系统,适用于共享基站背景下各运营商电费精准分摊和节能降耗。

如图2和图3所示,在本发明一实施例中,该铁塔通信基站电费精准计量和控制电力成本的供电系统的能量来源包括四个方面:风力发电机、公共电网、后备铅酸蓄电池及后备锂电池组,将风力发电、市电及电池储能有机结合起来为通信基站提供绿色、稳定和可靠的动力,不同于传统基站由市电、油机和铅酸蓄电池组成的供电系统,也不同于采用了新能源技术但却以市电为主、风光发电为补充、电池后备的现有新能源基站供电系统,它是以节能降耗和降低电力运营成本为目标,以储能电池发电为主,市电为辅的纯绿色节能发电系统。

公共电网输出的220VAC交流市电经过防雷空开和浪涌保护器防护后连接至市电输入开关,然后流进单相电度表,再通过整流开关连接至整流器,同时经由市电旁路开关进入到STS静态切换开关的市电输入端。因为工作于户外露天环境,电网输入接口处通过防雷空开连接到浪涌保护器,浪涌保护器的作用是将雷击浪涌电流快速泄入大地,从而保护用电设备免遭雷击,防雷空开可以在浪涌保护器老化或损坏以后迅速切断其与主回路的连接,从而避免引起其他故障发生。单相电度表的作用是计量基站消耗的电能,电网公司则以此为依据来收取电费;整流器的作用是将交流市电转换成311VDC左右的脉动直流电压,此电压一方面输入到逆变器被转化成干净纯洁的220VAC交流电后进入到STS静态切换开关的逆变输入端,另一方面经过直流断路器后对后备锂电池组进行充电。

STS静态切换开关主要用于两路电源供电切换,为电源二选一自动切换系统,在正常工作状态下,当主电源(即逆变输入)处于正常的电压范围内,负载一直连接于主电源;在主电源发生故障时,负载自动切换到备用电源(即市电输入),主电源恢复正常后,负载自动切换回主电源。STS静态切换开关在这里有两个作用,其一是优选整流逆变输入作为基站供电系统能量来源,为基站数据业务提供干净纯洁的220VAC交流电,避免受到电网电压波动和谐波的干扰影响;其二是当整流器或逆变器出现故障时可以无间断的切换到市电输入进行供电,避免发生停电掉站事故。

风力发电机输出电压约为15~100Vac,经过整流滤波和升压直流变换电路后对后备锂电池组进行充电,防反流二极管可以阻止高压电池组能量回流到直流变换电路输出端而损坏半导体功率器件。

后备锂电池组配备电池管理系统BMS进行保护和智能控制操作,在供电系统中同时起到能量调节和平衡负载两大作用,它将风力发电机输出的多余电能转化为化学能储存起来,以备供电不足时使用。电池管理系统BMS通过电路设计及相应的控制策略实现充电限流、充电保护、放电保护以及不间断切换功能。当电池组亏电时,电池管理系统BMS结合锂电池的充电特性和机理,按照马斯可接受充电电流曲线规律,通过控制充电限流模块内部MOS管栅源极间的PWM脉冲驱动信号占空比来对电池组进行分阶段恒流充电,实现电池组充电容量的最大化,可以极大地提高充电效率和电池组的循环寿命;当电池组充满电时,BMS断开充电限流模块,电池组处于待机备电状态;当高压直流母线上功率不足,电池组通过充放电保护模组不间断切换到高压直流母线上,为负载提供储备能量,而不产生发热和功耗。

基站负载由直流负载和交流负载两部分构成,直流负载主要是各运营商负责通信数据业务的基站设备和传输设备;交流负载包括机房智能空调、机房照明及诸如铁塔的航空警示灯等其他交流负载。STS静态切换开关的输出经由输出开关后直接为交流负载供电,同时进入UPS不间断电源,UPS不间断电源将220VAC交流电整流变换为48VDC直流电对后级直流负载供电,并对后备铅酸蓄电池进行浮充电。UPS不间断电源和后备铅酸蓄电池为原基站保留下来的供电设备,是对原有资源的充分利用,后备铅酸蓄电池用于前级交流掉电后短时间段内为直流负载不间断切换供电。所有交流负载设备经过交流配电箱引出220VAC交流电源,所有直流负载经由-48VDC直流母线铜排引出,一般基站电源都采用负电源系统,即48VDC直流母线正极接地,这样对设备和人员更为安全。

基站内交流负载属于公共用电部分,电费收取采取平均分摊的方式;而直流负载属于各运营商独立使用的用电部分,通过在各运营商供电支路上加装电量采集RTU(远程控制终端),采用分路计量方式对各运营商的设备用电进行实时测量,然后通过CAN总线将数据回传到电池管理系统BMS,电池管理系统BMS和单相电度表通过通信链接,并接收干路总电度数据。

电池管理系统BMS对所有接收数据进行汇总、加工,测算出基站中各家运营商每月的直流用电量,结合电度表的总电度数据,就可以准确地得出基站中每家运营商的准确用电量,根据用电量和基站的电费单价,即可计算出该站点每家运营商应该交纳的电费。

同时,电池管理系统BMS将基站内各个电气设备和控制装置的运行数据及状态参数由RS485总线上传到GPRS远传模块,GPRS远传模块通过无线通信和TCP/IP协议与网管中心的无线网关进行链接,以实现基站到后台数据库的信息交互,以及网管中心对基站的远程监控功能。

结合图3所示的供电系统电气拓扑,对其供电方式和工作过程描述如下:

(1)在晚上用电低谷时段,电价最低,此时若风速过低或处于无风条件则启动公共电网市电,市电通过整流逆变和降压直流变换后对机房及通信负荷进行供电,同时对后备锂电池组进行充电;

(2)在有风季节和有风时段,风力发电机启动工作,经整流滤波和升压直流变换后对后备锂电池组进行充电,将风能转化为化学能储存起来;

(3)在用电高峰时段,不启用公共电网市电,后备锂电池组投入运行,经逆变和后端UPS不间断电源对机房及通信负荷进行供电,极大降低电力运营成本;

(4)在用电平段,如果处于无风条件下且后备锂电池组处于亏电状态,则启用公共电网市电给机房及通信负荷供电,同时对后备锂电池组进行充电;

(5)当后备锂电池组充满电时,电池管理系统BMS断开充电保护开关,锂电池组处于放电准备状态;当后备锂电池组放完电时,电池管理系统BMS断开放电保护开关,锂电池组处于充电等待状态;

(6)在整流器或逆变器出现故障,或者需要进行检修的状态下,断开整流开关和直流断路器,公共电网市电经由市电旁路开关直接对机房及通信负荷供电,市电输入和逆变输入可以实现不间断切换;

(7)在STS静态切换开关出现故障,或者需要进行检修的状态下,断开市电旁路开关、整流开关、直流断路器以及输出开关,后备铅酸蓄电池投入使用,通过UPS不间断电源对关键数据业务进行供电;

(8)电量采集RTU分路计量各家运营商的设备用电,单相电度表测算干路总电度数据,根据用电量和电费单价,即可计算出该站点每家运营商应该交纳的电费,实现电费精准计量与分摊;

(9)电池管理系统BMS将基站内各个电气设备和控制装置的运行数据及状态参数由RS485总线上传到GPRS远传模块,GPRS远传模块通过无线通信和TCP/IP协议与网管中心的无线网关进行链接,实现基站到后台数据库的信息交互,以及网管中心对基站的远程监控功能。

本发明提出的一种可降低基站能源消耗和控制电力成本的铁塔通信基站供电系统,该铁塔通信基站供电系统有效结合风力发电机、后备锂电池组、后备铅酸蓄电池、UPS不间断电源和公共电网对机房及通信负荷进行交互供电,按照用电高峰、低谷和平段梯次配置,以储能电池发电为主,市电为辅,并能分路单独计量各家运营商的设备用电,实现中国铁塔及运营商共享各方在用电上的节能降耗以及电费的精准测算和合理分摊,具有实际推广价值。

以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号