首页> 中国专利> 一种带温度约束条件的锂电池传感器故障滤波诊断方法

一种带温度约束条件的锂电池传感器故障滤波诊断方法

摘要

本发明公开了一种带温度约束条件的锂电池传感器故障滤波诊断方法,属于锂电池故障诊断技术领域。所述方法包括:获取锂电池电压动态特性;建立锂电池离散线性电热模型;获取锂电池的参数矩阵和输入矩阵,并确定温度约束条件;建立带温度约束条件的锂电池离散线性电热模型;确定系统的输出矩阵;估计状态矩阵对应的全对称多胞形;计算输出矩阵对应的全对称多胞形;确定锂电池系统的故障状态和故障时间;若发生故障,设计故障估计器估计乘性传感器故障对应的区间;解决了噪声干扰信号不确定的锂电池系统的传感器故障估计问题,能够快速地估计出故障,且估计区间保守性更小,根据所估计出的区间进一步计算出故障数值,提高了对锂电池系统故障估计的精度。

著录项

  • 公开/公告号CN112989569A

    专利类型发明专利

  • 公开/公告日2021-06-18

    原文格式PDF

  • 申请/专利权人 江南大学;

    申请/专利号CN202110169955.X

  • 申请日2021-02-05

  • 分类号G06F30/20(20200101);G06F17/16(20060101);G06F111/04(20200101);

  • 代理机构23211 哈尔滨市阳光惠远知识产权代理有限公司;

  • 代理人林娟

  • 地址 214000 江苏省无锡市滨湖区蠡湖大道1800号

  • 入库时间 2023-06-19 11:29:13

说明书

技术领域

本发明涉及一种带温度约束条件的锂电池传感器故障滤波诊断方法,属于锂电池故障诊断技术领域。

背景技术

锂电池系统有着体积小、功率高、容量大、自动放电功率低、循环寿命长等优点,近些年已被广泛用于电动汽车、电子消费品、大规模或分布式储能等场景中。在锂电池的实际应用中,受环境因素和操作条件等的影响,锂电池容易不稳定。一旦锂电池出现问题,势必会导致整个系统存在短路等安全问题,造成较高的安全隐患。因此,为保证锂电池系统的安全可靠的运行,对锂电池进行实时有效的故障诊断是非常有必要的。

锂电池系统工作环境复杂,易受各种环境因素的影响,同时考虑实际环境中各种干扰噪声一般不满足特定的概率分布,因此现有技术中,将能够基于未知但有界的噪声进行系统故障诊断的椭球集员滤波故障诊断方法应用于锂电池系统中,则能够有效诊断出锂电池系统的运行状态。

但是,这种方法的估计区间保守性较大、估计精度有待于进一步的提高。

发明内容

为了进一步的提高对锂电池系统故障估计的精度,本发明提供了一种带温度约束条件的锂电池传感器故障滤波诊断方法,所述方法包括:

S1根据锂电池的离散线性电热模型,并基于锂电池的参数矩阵和输入矩阵和锂电池系统在正常工作状态下的温度约束条件,建立带温度约束条件的锂电池离散线性电热模型;

S2获取锂电池在工作状态下的电池内核温度和表面温度,并根据锂电池离散线性电热模型确定锂电池在工作状态下对应的输出矩阵;

S3根据锂电池的参数矩阵和输入矩阵、S1建立的带温度约束条件的锂电池离散线性电热模型以及S2确定的锂电池在工作状态下对应的输出矩阵,设计带约束的全对称多胞形卡尔曼滤波器,并计算锂电池的输出矩阵对应的全对称多胞形;

S4根据S3计算得到的锂电池输出矩阵对应的全对称多胞形,确定锂电池系统的故障状态和故障时间;

S5根据锂电池的参数矩阵和输入矩阵、S1建立的带温度约束条件的锂电池离散线性电热模型以及S2确定的锂电池在工作状态下对应的输出矩阵,设计带约束的全对称多胞形卡尔曼滤波故障估计器,进一步估计锂电池系统的乘性传感器故障数值对应的区间集合。

可选的,所述方法包括:

步骤101,根据锂电池的双极化电池模型和电路工作原理,获取锂电池电压动态特性;

其中R

步骤102,根据锂电池的双态热子模型,建立锂电池离散线性电热模型;

步骤103,获取锂电池的参数矩阵和输入矩阵,并确定系统在正常工作状态下温度约束条件;所述参数矩阵根据电池核心与表面之间的热阻R

步骤104,根据步骤102建立的锂电池离散线性电热模型和步骤103确定的温度约束条件,确定带温度约束条件的锂电池离散线性电热模型;

步骤105,获取锂电池在工作状态下的电池内核温度T

步骤106,设计带约束的全对称多胞形卡尔曼滤波器,估计锂电池系统状态矩阵对应的全对称多胞形

步骤107,根据步骤106估计出的状态矩阵对应的全对称多胞形

步骤108,根据步骤107计算的锂电池输出矩阵对应的全对称多胞形

步骤109,设计带约束的全对称多胞形卡尔曼滤波故障估计器,估计乘性传感器故障数值对应的区间集合

可选的,所述步骤102,根据锂电池的双态热子模型,建立锂电池离散线性电热模型,包括:

根据锂电池产热、导热原理,建立锂电池双态热子模型:

其中,Q

以发热功率Q

其中x(k)=[x

可选的,所述步骤104,根据步骤102建立的锂电池离散线性电热模型和步骤103确定的温度约束条件,确定带温度约束条件的锂电池离散线性电热模型,包括:

根据步骤103确定的锂电池系统的温度约束条件,确定系统的约束方程:

|γ(k)-H(k)x(k)|≤l

其中γ(k)=[29,5.85]

同时基于步骤102建立的锂电池离散线性电热模型,确定带温度约束条件的锂电池离散线性电热模型:

其中

可选的,所述步骤106,设计带约束的全对称多胞形卡尔曼滤波器,估计锂电池系统状态矩阵对应的全对称多胞形

带约束的全对称多胞形卡尔曼滤波器为:

其中

则锂电池系统的估计状态通过如下式子递推得到:

K(k-1)=R(k-1)S

L(k-1)=AK(k-1)

其中L(k-1)为最优增益矩阵,

可选的,所述步骤107,根据步骤106估计出的状态矩阵对应的全对称多胞形

根据步骤106估计的状态矩阵对应的全对称多胞形

其中,

可选的,所述步骤108,根据步骤107计算的锂电池输出矩阵对应的全对称多胞形

根据步骤107计算的输出矩阵对应的全对称多胞形

其中

可选的,所述步骤109,设计带约束的全对称多胞形卡尔曼滤波故障估计器,估计乘性传感器故障数值对应的区间集合

按如下式子递推计算最优增益矩阵L(k-1):

K(k-1)=R(k-1)S

L(k-1)=AK(k-1)

其中

基于上述计算所得的最优增益矩阵,设计的带约束的全对称多胞形卡尔曼滤波故障估计器如下:

其中

其中,

可选的,通过温度传感器测量锂电池系统中的电池内核温度和表面温度的大小。

本申请还提供一种带温度约束条件的锂电池传感器故障滤波诊断系统,所述系统采用上述方法对锂电池系统的传感器故障进行诊断。

本发明有益效果是:

针对考虑锂电池正常工作状态下内核温度和表面温度一般满足一定的约束条件,设计了一种带温度约束条件的锂电池传感器故障滤波诊断方法,通过获取锂电池电压动态特性;建立锂电池离散线性电热模型;获取锂电池的参数矩阵和输入矩阵,并确定温度约束条件;建立带温度约束条件的锂电池离散线性电热模型;确定系统的输出矩阵;估计状态矩阵对应的全对称多胞形;计算输出矩阵对应的全对称多胞形;确定锂电池系统的故障状态和故障时间;若发生故障,设计故障估计器估计乘性传感器故障对应的区间;解决了噪声干扰信号不确定的锂电池系统的传感器故障估计问题,能够快速地估计出故障,并进一步提高了对锂电池系统故障估计的精度,充分利用了系统的约束条件,达到了提高锂电池故障估计的保守性的效果。

附图说明

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明一个实施例公开的一种带温度约束条件的锂电池传感器故障滤波诊断方法流程图。

图2是一种锂电池双极化电池模型等效电路图。

图3是本发明一个实施例公开的一种锂电池传感器故障检测信号变化曲线仿真图。

图4是本发明一个实施例公开的两种方法下的一种锂电池乘性传感器故障f

图5是本发明一个实施例公开的两种方法下的一种锂电池乘性传感器故障f

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。

实施例一:

本实施例提供一种带温度约束条件的锂电池传感器故障滤波诊断方法,所述方法包括:

S1根据锂电池的离散线性电热模型,并基于锂电池的参数矩阵和输入矩阵和锂电池系统在正常工作状态下的温度约束条件,建立带温度约束条件的锂电池离散线性电热模型;

S2获取锂电池在工作状态下的电池内核温度和表面温度,并根据锂电池离散线性电热模型确定锂电池在工作状态下对应的输出矩阵;

S3根据锂电池参数矩阵和输入矩阵、S1建立的带温度约束条件的锂电池离散线性电热模型以及S2确定的锂电池在工作状态下对应的输出矩阵,设计带约束的全对称多胞形卡尔曼滤波器,并计算锂电池的输出矩阵对应的全对称多胞形;

S4根据S3计算得到的锂电池输出矩阵对应的全对称多胞形,确定锂电池系统的故障状态和故障时间;

S5根据锂电池的参数矩阵和输入矩阵、S1建立的带温度约束条件的锂电池离散线性电热模型以及S2确定的锂电池在工作状态下对应的输出矩阵,设计带约束的全对称多胞形卡尔曼滤波故障估计器,进一步估计锂电池系统的乘性传感器故障数值对应的区间集合。

实施例二:

本实施例提供一种带温度约束条件的锂电池传感器故障滤波诊断方法,参见图1,所述方法包括:

步骤101,根据锂电池的双极化电池模型和电路工作原理,获取锂电池电压动态特性。

锂电池双极化电池模型等效电路如图2所示,其中R

由基尔霍夫电压定律可得,端电压U=U

本申请中,“·”表示求导符号。

步骤102,根据锂电池的双态热子模型,建立锂电池离散线性电热模型。

根据锂电池产热、导热等原理,建立锂电池双态热子模型:

其中,C

以发热功率Q

其中x(k)=[x

步骤103,获取锂电池的参数矩阵和输入矩阵,并确定系统在正常工作状态下温度约束条件。

当锂电池处于工作状态下时,系统参数分别为R

将系统参数代入系统的参数矩阵A和B中,确定参数矩阵A和B的具体数值。

当锂电池处于工作状态下时,电压动态特性中的参数分别为R

根据获取的端电压U

将k时刻的环境温度T

当锂电池处于正常工作状态下时,其内核温度保持在一定的范围内,即T

步骤104,根据锂电池离散线性电热模型和温度约束条件,确定带温度约束条件的锂电池离散线性电热模型。

根据锂电池系统的温度约束条件,确定系统的约束方程:

|γ(k)-H(k)x(k)|≤l (4)

其中γ(k)=[29,5.85]

同时基于步骤102建立的锂电池离散线性电热模型,确定带温度约束条件的锂电池离散线性电热模型:

其中

步骤105,获取锂电池在工作状态下的电池内核温度和表面温度,并确定对应的输出矩阵。

在预定时间范围内,获取锂电池在工作状态下的电池内核温度和表面温度。

预定时间范围为1至N,N为整数,N的值是预先设置的。

实际应用中,可利用温度传感器测量锂电池系统中的电池内核温度和表面温度的大小。

将所得的工作状态下的电池内核温度和表面温度的数据代入输出矩阵y(k)=[T

步骤106,设计带约束的全对称多胞形卡尔曼滤波器,估计锂电池系统状态矩阵对应的全对称多胞形。

设计的带约束的全对称多胞形卡尔曼滤波器如下:

其中

则锂电池系统的估计状态可通过式(7)~(14)递推得到:

K(k-1)=R(k-1)S

L(k-1)=AK(k-1) (12)

其中L(k-1)为最优增益矩阵,

步骤107,根据状态矩阵对应的全对称多胞形,计算锂电池的输出矩阵对应的全对称多胞形。

根据状态矩阵对应的全对称多胞形

其中,

步骤108,根据锂电池输出矩阵对应的全对称多胞形,确定锂电池系统的故障状态和故障时间。

根据输出矩阵对应的全对称多胞形

其中

步骤109,设计带约束的全对称多胞形卡尔曼滤波故障估计器,估计乘性传感器故障数值对应的区间集合。

对发生乘性传感器故障的锂电池系统,最优增益矩阵L(k-1)的计算可以通过式(18)~(23)递推得到:

K(k-1)=R(k-1)S

L(k-1)=AK(k-1) (23)

其中

基于上述计算所得的最优增益矩阵,设计的带约束的全对称多胞形卡尔曼滤波故障估计器如下:

其中

其中,

需要说明的是,本发明实施例提供的一种带温度约束条件的锂电池传感器故障滤波诊断方法,诊断锂电池系统是否发生故障是在锂电池处于实际工作状态下进行的,并且适用于锂电池系统发生乘性传感器故障的情况。

为验证本申请提出的一种带温度约束条件的锂电池传感器故障滤波诊断方法的有效性和可行性,进行如下仿真实验:

设置在k=2000和k=3000发生两种不同的乘性传感器故障,并且具体数值为:

图3展示了本申请提出的一种带约束的锂电池传感器故障滤波诊断方法的故障检测结果,设定故障检测信号为0表示系统未发生故障,故障检测信号为1表示系统发生了故障。由曲线可得,故障检测信号在2000时刻由0变为1,之后一直保持1直至系统运行结束,表示本申请所提出的方法检测出系统在k=2000时发生了故障,之后一直处于故障状态。此故障检测时间与实际的故障发生时间相同,表明系统一旦发生故障,该故障诊断方法就能立即检测到系统发生了故障,这是因为本申请增加了温度约束条件使得所估计的区间的上下界之间的间距更小,因而一旦系统有传感器故障,使得输出超出了上下界值,就能检测到故障。而现有方法中,因为所估计的区间的保守性更大,也即其上下界之间的间距相对于本申请来说更大,所以导致输出超出其上下界值需要的时间更长一些,因此本申请方法与现有方法相比,有着故障检测速度快的优点。

基于相同的仿真条件,将本申请提出的一种带温度约束的锂电池传感器故障滤波诊断方法与现有的基于全对称多胞形卡尔曼滤波的锂电池传感器故障诊断方法进行对比,得到的乘性传感器故障估计对比结果如图4和图5所示。

其中,现有的基于全对称多胞形卡尔曼滤波的故障检测方法可参考:

“基于状态集员估计的主动故障检测[J/OL],自动化学报,1-10[2021-01-12].https://doi.org/10.16383/j.aas.c180830.”。

图4和图5分别展示了检测到系统发生故障后,两种算法下乘性传感器故障对应区间集合的上下界和基于带温度约束条件的锂电池传感器故障滤波诊断方法得到的乘性传感器故障对应的区间集合的中心点变化情况。

如图4和图5所示,在k=2000时,乘性传感器故障对应的区间集合的中心点不为1,表示此时系统发生乘性传感器故障。同时,在k=3000左右时,乘性传感器故障对应的区间的中心点发生变化,表明在此刻锂电池系统的乘性传感器故障发生变化。根据乘性传感器故障对应的区间集合的中心点,可得在k∈(2000,3000)时,乘性传感器故障数值大致在

此外,对比基于全对称多胞形卡尔曼滤波的锂电池传感器故障诊断方法,本申请提出的带温度约束条件的锂电池传感器故障滤波诊断方法得到的区间的上下界之间的间距更小,表明此方法在充分利用锂电池温度约束条件的基础上,能够得到更紧致的乘性传感器故障对应的区间集合,有着更好的保守性。

本发明实施例中的部分步骤,可以利用软件实现,相应的软件程序可以存储在可读取的存储介质中,如光盘或硬盘等。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号