首页> 中国专利> 一种应用于新能源汽车气缸内壁复合陶瓷膜的制备方法

一种应用于新能源汽车气缸内壁复合陶瓷膜的制备方法

摘要

本发明提供了一种应用于新能源汽车气缸内壁复合陶瓷膜的制备方法,包括如下步骤:(1)清洗气缸内壁,然后在气缸内壁制备内置辅助阴极;(2)将气缸外接阳极,然后将溶液循环泵连接所述的内置辅助阴极,电解液通过所述的溶液循环泵喷射在气缸内;(3)通过所述的电解液的氧化制备得到复合陶瓷膜,然后清洗复合陶瓷膜、粗抛光、精抛光即成。本发明所述的应用于新能源汽车气缸内壁复合陶瓷膜的制备方法制备得到的复合陶瓷膜解决了气缸的耐磨性、耐高温性、无油润滑等问题。

著录项

  • 公开/公告号CN112941595A

    专利类型发明专利

  • 公开/公告日2021-06-11

    原文格式PDF

  • 申请/专利权人 新昌县迪嘉轻金属科技有限公司;

    申请/专利号CN202110155934.2

  • 发明设计人 丁伟国;

    申请日2021-02-04

  • 分类号C25D11/34(20060101);

  • 代理机构12229 天津合正知识产权代理有限公司;

  • 代理人邢月;石熠

  • 地址 312500 浙江省绍兴市新昌县儒岙镇国道东路6号

  • 入库时间 2023-06-19 11:22:42

说明书

技术领域

本发明属于新能源汽车压缩机气缸领域,尤其是涉及一种应用于新能源汽车气缸内壁复合陶瓷膜的制备方法。

背景技术

由于压缩机气缸活塞是贴合气缸体内壁作高速的往复运动,所以要求其内壁要有很好的耐磨性和极小的表面粗糙度小,传统的气缸大部分都是铸铁镶嵌合金缸套,加工流程繁琐,且缸体散热性能差,需有油润滑,气源品质含油性,后期保养成本高,新型无油压缩机气缸体以铝合金材料,虽然材料重量轻,散热性能好,但铝合金材料硬度,耐磨性差。

发明内容

有鉴于此,本发明旨在克服现有技术中的缺陷,提出一种应用于新能源汽车气缸内壁复合陶瓷膜的制备方法。

为达到上述目的,本发明的技术方案是这样实现的:

一种应用于新能源汽车气缸内壁复合陶瓷膜的制备方法,包括如下步骤:

(1)清洗气缸内壁,然后在气缸内壁制备内置辅助阴极;

(2)将气缸外接阳极,然后将溶液循环泵连接所述的内置辅助阴极,电解液通过所述的溶液循环泵喷射在气缸内;

(3)通过所述的电解液的氧化制备得到复合陶瓷膜,然后清洗复合陶瓷膜、粗抛光、精抛光即成。

进一步,所述的步骤(1)中内置辅助阴极的方法包括如下步骤:在不锈钢管的表面螺旋包裹有PPR塑材,所述的PPR塑材上开设有若干的通孔,相邻的通孔之间开设有连通槽。

进一步,所述的连通槽的长宽比为2:1。

进一步,所述的步骤(3)中氧化步骤的方法包括如下步骤:开启溶液循环泵、槽液冷却系统与微弧氧化电源,设置电源频率500HZ,脉宽300-400us,恒流运行,每隔5分钟电流增加5-8A,运行时间25分钟,开启超声波震荡,每分钟2-5A增加电流强度,母线电压620V左右,停止运行。

进一步,所述的步骤(4)中粗抛光步骤的转速为10000-20000转/分钟。

一种电解液,该电解液由包括如下原料制成:Na

优选的,所述的电解液由包括如下原料制成:Na

优选的,所述的电解液由包括如下原料制成:Na

进一步,所述的电解液的pH值为11-13,电导率为20-25ms/cm。

一种气缸,该气缸的内壁包覆有所述的复合陶瓷膜。

所述的气缸的应用,该气缸在制备新能源汽车中的应用。

相对于现有技术,本发明具有以下优势:

本发明所述的应用于新能源汽车气缸内壁复合陶瓷膜的制备方法制备得到的复合陶瓷膜解决了气缸的耐磨性、耐高温性、无油润滑等问题。

附图说明

图1为本发明实施例所述的应用于新能源汽车气缸内壁复合陶瓷膜的扫描电镜图;

图2为本发明实施例所述的应用于新能源汽车气缸内壁复合陶瓷膜的金相显微图;

图3为本发明实施例所述的应用于新能源汽车气缸内壁复合陶瓷膜的相结构;

图4为本发明实施例所述的应用于新能源汽车气缸内壁复合陶瓷膜的摩擦系数图;

图5为本发明实施例所述的应用于新能源汽车气缸的俯视图;

图6为本发明实施例所述的应用于新能源汽车气缸的侧视图。

附图标记说明:

1、气缸;2、内壁。

具体实施方式

除有定义外,以下实施例中所用的技术术语具有与本发明所属领域技术人员普遍理解的相同含义。以下实施例中所用的试验试剂,如无特殊说明,均为常规生化试剂;所述实验方法,如无特殊说明,均为常规方法。

下面结合实施例来详细说明本发明。

实施例1

一种应用于新能源汽车气缸内壁复合陶瓷膜的制备方法,包括如下步骤:

(1)清洗气缸内壁,然后在气缸内壁制备内置辅助阴极,在316不锈钢管的表面螺旋包裹有PPR塑材,所述的PPR塑材上开设有若干的3mm的通孔,相邻的通孔之间开设有5*10mm的连通槽,便于阴极电磁场辐射,缸体外接阳极,溶液循环泵连接因为辅助阴极,促使电解液以一定的流速流量,喷射在入气缸内部;

(2)将气缸外接阳极,然后将溶液循环泵连接所述的内置辅助阴极,电解液通过所述的溶液循环泵喷射在气缸内;

(3)采用20kW双脉冲微弧氧化装置对新能源汽车气缸内壁进行微弧氧化,气缸作阳极浸在电解液中,带冷却系统的不锈钢容器作为阴极,在气缸内壁插入的316不锈钢管作为辅助阴极,并使电源工作在恒流方式,开启溶液循环泵、槽液冷却系统与微弧氧化电源,设置电源频率500HZ,脉宽350us,恒流运行,每隔5分钟电流增加5-8A,运行时间25分钟,开启超声波震荡,每分钟2-5A增加电流强度,母线电压620V左右,停止运行,通过所述的电解液的氧化制备得到复合陶瓷膜;

(4)清洗复合陶瓷膜、15000转/分钟粗抛光、精抛光即成。由于微弧氧化陶瓷膜表面是有一层疏松膜层,表面有点粗糙。用尼龙纤维抛轮,以15000转/分钟电子轴,进行粗抛,粗抛完成用纯净压缩空气吹干洁净缸体内壁,转入喷射有高效金刚石抛光剂的羊毛抛轮继续精抛。确保气缸内壁的粗糙度,以减小活塞在高速运动下的摩擦力,增加气缸的使用寿命;

(5)把抛光好的气缸,进行后期的尺寸检查,保证气缸的上口和下口垂直度在误差范围内(+/-0.01mm),防止误差太大,避免活塞在运动过程中拉伤缸体。

一种电解液,该电解液由包括如下原料制成:Na

将各组分进行混合,空气搅拌溶解,使其充分溶解在水中,所述的电解液的pH值为12.08,电导率为22.8ms/cm。

制备得到的气缸内壁复合陶瓷膜采用X射线衍射仪(XRD)测定试样的相结构。用Hitachi S-4700型扫描电镜(SEM)测定试样的表面形貌。用HMV-IT显微硬度计测试试样的显微硬度。采用中科院兰州物理所研制的WTM-2E型球-盘摩擦磨损实验机研究试样在干摩擦下的磨损性能。

从图1中可以看出复合陶瓷膜呈现火山口形貌,存在微孔,直径在2mm-12mm之间。

图2为气缸内壁复合陶瓷膜金相显微图,可以清楚的看到膜层的存在,并且可以测出膜厚为20.3μm。用HMV-IT显微硬度计测试试样的显微硬度为952HV。表明该复合陶瓷膜硬度高,耐磨性好。

图3为用X射线衍射仪(XRD)测定试样的相结构,膜层中含有Al相、γ-Al2O3、α-Al

图4为气缸内壁复合陶瓷膜摩擦系数图,可以看出气缸内壁的摩擦系数为0.8左右。表明该复合陶瓷膜摩擦学性能优异,能实现无油润滑。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号