首页> 中国专利> 一种利用核磁共振的图像数据建立方法及系统

一种利用核磁共振的图像数据建立方法及系统

摘要

本发明涉及一种图像数据建立的技术领域,揭露了一种利用核磁共振的图像数据建立方法,包括:利用基于快速傅里叶变换的图像特征提取算法提取不同模态核磁共振图像的低分辨率特征和高分辨率特征;计算得到不同模态核磁共振图像的低分辨率滤波器和高分辨率滤波器;利用低分辨率滤波器和高分辨率滤波器对不同模态的核磁共振图像特征进行滤波和映射处理,将不同模态的核磁共振图像合成为高分辨率图像数据;利用结合图像域和梯度域的神经网络方法对高分辨率图像数据进行增强处理;利用基于直方图的图像数据标准化方法对增强后的高分辨率图像数据进行标准化处理。本发明还提供了一种利用核磁共振的图像数据建立系统。本发明实现了图像数据的建立。

著录项

  • 公开/公告号CN112950506A

    专利类型发明专利

  • 公开/公告日2021-06-11

    原文格式PDF

  • 申请/专利权人 吴统明;

    申请/专利号CN202110249433.0

  • 发明设计人 吴统明;

    申请日2021-03-08

  • 分类号G06T5/00(20060101);G06T5/40(20060101);G06T7/13(20170101);G06N3/04(20060101);

  • 代理机构

  • 代理人

  • 地址 510000 广东省广州市天河区软件路17号第G1栋

  • 入库时间 2023-06-19 11:22:42

说明书

技术领域

本发明涉及图像数据建立的技术领域,尤其涉及一种利用核磁共振的图像数据建立方法及系统。

背景技术

近几年基于人工智能的医疗大数据分析受到越来越多的关注,特别是基于影像组学的研究成为了热点,其中磁共振成像作为一种无辐射、扫描时间快并且具有多种模态的成像手段,在临床医学诊断中起了很大的作用。

传统利用核磁共振的图像建立方法为获取核磁共振图像中像素方向,将方向作为平滑的依据来更新高分辨率图像中的边缘信息,在利用边缘信息方面,使用了边缘信息作为后期图像锐化的参考,并在此基础上利用基于边缘导向的插值算法进行图像数据的建立,但这种方法取决于边缘信息的提取程度。

鉴于此,如何根据核磁共振图像,进行更为准确的医学图像数据建立,成为本领域技术人员亟待解决的问题。

发明内容

本发明提供一种利用核磁共振的图像数据建立方法,通过利用基于快速傅里叶变换的图像特征提取算法进行核磁共振图像特征的提取,针对所提取的核磁共振图像,利用基于多模态的图像建立方法进行图像数据建立,并利用结合图像域和梯度域的神经网络方法进行图像数据的增强,最后利用基于直方图的图像数据标准化方法进行图像数据的标准化处理。

为实现上述目的,本发明提供的一种利用核磁共振的图像数据建立方法,包括:

获取不同模态的核磁共振图像,利用基于快速傅里叶变换的图像特征提取算法提取不同模态核磁共振图像的低分辨率特征和高分辨率特征;

根据不同模态核磁共振图像的低分辨率特征和高分辨率特征,计算得到不同模态核磁共振图像的低分辨率滤波器和高分辨率滤波器;

基于多模态的高分辨率图像建立方法,利用低分辨率滤波器和高分辨率滤波器对不同模态的核磁共振图像特征进行滤波和映射处理,将不同模态的核磁共振图像合成为高分辨率图像数据;

利用结合图像域和梯度域的神经网络方法对高分辨率图像数据进行增强处理,得到增强后的高分辨率图像数据;

利用基于直方图的图像数据标准化方法对增强后的高分辨率图像数据进行标准化处理。

可选地,所述利用基于快速傅里叶变换的图像特征提取算法提取不同模态核磁共振图像的低分辨率特征和高分辨率特征,包括:

所述不同模态的核磁共振图像即来自不同参数的核磁共振设备的同一患者的核磁共振图像;

所述基于快速傅里叶变换的图像特征提取算法流程为:

1)构建图像分解目标函数:

f

其中:

x为不同模态核磁共振图像;

Z

f

f

f

α为图像分解过程中不同方向梯度算子的影响因子,将其设置为0.3;

2)利用快速傅里叶算法对所述目标函数进行求解,得到不同模态核磁共振图像的低分辨率特征:

其中:

F(·)表示快速傅里叶变换;

F

⊙表示矩阵间的按元素点乘运算;

3)根据所得不同模态核磁共振图像的低分辨率特征Z

x

4)将核磁共振图像的高频部分进行快速傅里叶变换,得到核磁共振图像的高分辨率特征:

Z

其中:

Z

x

f

可选地,所述计算得到不同模态核磁共振图像的低分辨率滤波器和高分辨率滤波器,包括:

所述低分辨率滤波器的目标函数式为:

其中:

x

f={f

e为滤波器的能量约束,将其设置为0.2;

所述高分辨率滤波器的目标函数式为:

其中:

x

f

w

可选地,所述利用低分辨率滤波器和高分辨率滤波器对不同模态的核磁共振图像特征进行滤波和映射处理,包括:

对于低分辨率核磁共振图像,利用低分辨率滤波器f对其进行卷积稀疏编码,得到相应的低分辨率特征Z

利用快速傅里叶变换将低分辨率特征Z

利用高分辨率滤波器f′对高分辨率特征Z

其中:

M为高分辨率合成图像数据;

f′

可选地,所述利用结合图像域和梯度域的神经网络方法对高分辨率图像数据进行增强处理,包括:

1)计算高分辨率图像数据f(x,y)的梯度域信息,所述梯度域信息包括高分辨率图像的梯度值G(x,y)和梯度方向α(x,y):

其中:

2)构建结合图像域和梯度域的图像数据增强公式:

其中:

F

h为高分辨率图像数据的K空间数据;

β为图像域和梯度域信息的权重系数,将其设置为0.8;

y

可选地,所述利用基于直方图的图像数据标准化方法增强后的高分辨率图像数据进行标准化处理,包括:

1)确定高分辨率图像中的像素个数N以及核磁共振图像中的器官数目K,将每个像素设置为i,初始标准化步长为K/2;利用N和K建立二维网格,网格节点为N和K对应的参考目标点;

2)从核磁共振图像中器官的中间参考目标点开始水平方向地搜索,每次步长为K/2;并随机选取30%的像素点进行直方图规定化处理(每次选取相同的样本),根据直方图结果,判断当前参考目标点是否处于直方图的中心区域,若符合条件,则认为当前参考目标点为候选目标点;

3)重复2),直到获取m个候选目标点,并将所述m个候选目标点作为最优集群;

4)在最优集群中,从每个候选目标点的中间目标点开始依次搜索,如果切片中不包含病变器官,则停止搜索;遍历完最优集合之后选择最优值,所述最优值为搜索结果包含病变器官的候选目标点,并将该候选目标点作为最优核磁共振目标点;

5)搜索结束后,输出最优核磁共振目标点,并对该目标点进行标记,从而方便后续医生利用该目标点对患者进行更为准确地治疗。

此外,为实现上述目的,本发明还提供一种利用核磁共振的图像数据建立系统,所述系统包括:

核磁共振图像获取装置,用于获取不同模态的核磁共振图像,利用基于快速傅里叶变换的图像特征提取算法提取不同模态核磁共振图像的低分辨率特征和高分辨率特征;

图像处理器,用于根据不同模态核磁共振图像的低分辨率特征和高分辨率特征,计算得到不同模态核磁共振图像的低分辨率滤波器和高分辨率滤波器

图像数据建立装置,用于利用低分辨率滤波器和高分辨率滤波器对不同模态的核磁共振图像特征进行滤波和映射处理,将不同模态的核磁共振图像合成为高分辨率图像数据,并利用结合图像域和梯度域的神经网络方法对高分辨率图像数据进行增强处理,得到增强后的高分辨率图像数据,同时利用基于直方图的图像数据标准化方法对增强后的高分辨率图像数据进行标准化处理。

此外,为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有图像数据建立程序指令,所述图像数据建立程序指令可被一个或者多个处理器执行,以实现如上所述的利用核磁共振的图像数据建立的实现方法的步骤。

相对于现有技术,本发明提出一种利用核磁共振的图像数据建立方法,该技术具有以下优势:

首先,针对不同模态的核磁共振图像,本发明利用基于快速傅里叶变换的图像特征提取算法提取不同模态核磁共振图像的低分辨率特征和高分辨率特征,由于高分辨率特征并不是已知的,因此本发明首先通过构建图像分解目标函数计算核磁共振图像的低分辨率特征:

f

其中:x为不同模态核磁共振图像;Z

其中:F(·)表示快速傅里叶变换;F

x

将核磁共振图像的高频部分进行快速傅里叶变换,得到核磁共振图像的高分辨率特征:

Z

其中:Z

对于所获得的核磁共振图像的低分辨率特征以及高分辨率特征,根据不同模态核磁共振图像的低分辨率特征和高分辨率特征,计算得到不同模态核磁共振图像的低分辨率滤波器和高分辨率滤波器,所述低分辨率滤波器的目标函数式为:

其中:x

其中:x

其中:M为高分辨率合成图像数据;

最后本发明利用结合图像域和梯度域的神经网络方法对高分辨率图像数据进行增强处理,首先本发明计算高分辨率图像数据f(x,y)的梯度域信息,所述梯度域信息包括高分辨率图像的梯度值G(x,y)和梯度方向α(x,y):

其中:

其中:F

附图说明

图1为本发明一实施例提供的一种利用核磁共振的图像数据建立方法的流程示意图;

图2为本发明一实施例提供的一种利用核磁共振的图像数据建立系统的结构示意图;

本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。

具体实施方式

应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

通过利用基于快速傅里叶变换的图像特征提取算法进行核磁共振图像特征的提取,针对所提取的核磁共振图像,利用基于多模态的图像建立方法进行图像数据建立,并利用结合图像域和梯度域的神经网络方法进行图像数据的增强,最后利用基于直方图的图像数据标准化方法进行图像数据的标准化处理。参照图1所示,为本发明一实施例提供的利用核磁共振的图像数据建立方法示意图。

在本实施例中,利用核磁共振的图像数据建立方法包括:

S1、获取不同模态的核磁共振图像,利用基于快速傅里叶变换的图像特征提取算法提取不同模态核磁共振图像的低分辨率特征和高分辨率特征。

首先,本发明获取不同模态的核磁共振图像,所述不同模态的核磁共振图像即来自不同参数的核磁共振设备的同一患者的核磁共振图像;

进一步地,本发明利用基于快速傅里叶变换的图像特征提取算法提取不同模态核磁共振图像的低分辨率特征和高分辨率特征,所述基于快速傅里叶变换的图像特征提取算法流程为:

1)构建图像分解目标函数:

f

其中:

x为不同模态核磁共振图像;

Z

f

f

f

α为图像分解过程中不同方向梯度算子的影响因子,将其设置为0.3;

2)利用快速傅里叶算法对所述目标函数进行求解,得到不同模态核磁共振图像的低分辨率特征:

其中:

F(·)表示快速傅里叶变换;

F

⊙表示矩阵间的按元素点乘运算;

3)根据所得不同模态核磁共振图像的低分辨率特征Z

x

4)将核磁共振图像的高频部分进行快速傅里叶变换,得到核磁共振图像的高分辨率特征:

Z

其中:

Z

x

f

S2、根据不同模态核磁共振图像的低分辨率特征和高分辨率特征,计算得到不同模态核磁共振图像的低分辨率滤波器和高分辨率滤波器。

进一步地,根据不同模态核磁共振图像的低分辨率特征和高分辨率特征,本发明计算得到不同模态核磁共振图像的低分辨率滤波器和高分辨率滤波器,所述低分辨率滤波器的目标函数式为:

其中:

x

f={f

e为滤波器的能量约束,将其设置为0.2;

所述高分辨率滤波器的目标函数式为:

其中:

x

f′={f′

w

S3、基于多模态的高分辨率图像建立方法,利用低分辨率滤波器和高分辨率滤波器对不同模态的核磁共振图像特征进行滤波和映射处理,将不同模态的核磁共振图像合成为高分辨率图像数据。

进一步地,根据所获得的低分辨率滤波器和高分辨率滤波器,本发明利用低分辨率滤波器和高分辨率滤波器对不同模态的核磁共振图像特征进行滤波和映射处理,所述利用低分辨率滤波器和高分辨率滤波器对不同模态的核磁共振图像特征进行滤波和映射处理的流程为:

对于低分辨率核磁共振图像,利用低分辨率滤波器f对其进行卷积稀疏编码,得到相应的低分辨率特征Z

利用快速傅里叶变换将低分辨率特征Z

利用高分辨率滤波器f′对高分辨率特征Z

其中:

M为高分辨率合成图像数据;

f′

S4、利用结合图像域和梯度域的神经网络方法对高分辨率图像数据进行增强处理,得到增强后的高分辨率图像数据。

进一步地,对于所得到的核磁共振图像的高分辨率合成图像数据,本发明利用结合图像域和梯度域的神经网络方法对其进行增强处理,所述结合图像域和梯度域的神经网络方法流程为:

1)计算高分辨率图像数据f(x,y)的梯度域信息,所述梯度域信息包括高分辨率图像的梯度值G(x,y)和梯度方向α(x,y):

其中:

2)构建结合图像域和梯度域的图像数据增强公式:

其中:

F

h为高分辨率图像数据的K空间数据;

β为图像域和梯度域信息的权重系数,将其设置为0.8;

y

S5、利用基于直方图的图像数据标准化方法对增强后的高分辨率图像数据进行标准化处理。

进一步地,本发明利用基于直方图的图像数据标准化方法对增强后的高分辨率图像数据进行标准化处理,所述基于直方图的图像数据标准化方法为:

1)确定高分辨率图像中的像素个数N以及核磁共振图像中的器官数目K,将每个像素设置为i,初始标准化步长为K/2;利用N和K建立二维网格,网格节点为N和K对应的参考目标点;

2)从核磁共振图像中器官的中间参考目标点开始水平方向地搜索,每次步长为K/2;并随机选取30%的像素点进行直方图规定化处理(每次选取相同的样本),根据直方图结果,判断当前参考目标点是否处于直方图的中心区域,若符合条件,则认为当前参考目标点为候选目标点;

3)重复2),直到获取m个候选目标点,并将所述m个候选目标点作为最优集群;

4)在最优集群中,从每个候选目标点的中间目标点开始依次搜索,如果切片中不包含病变器官,则停止搜索;遍历完最优集合之后选择最优值,所述最优值为搜索结果包含病变器官的候选目标点,并将该候选目标点作为最优核磁共振目标点;

5)搜索结束后,输出最优核磁共振目标点,并对该目标点进行标记,从而方便后续医生利用该目标点对患者进行更为准确地治疗。

下面通过一个算法实验来说明本发明的具体实施方式,并对发明的处理方法进行测试。本发明算法的硬件测试环境为:Inter(R)Core(TM)i7-6700K CPU,软件为python3.5,测试环境为PyTorch1.0;对比方法为基于神经网络的图像数据建立方法以及基于稀疏编码的图像数据建立方法。

在本发明所述算法实验中,数据集为来自三甲医院的5000张不同模态的低分辨率核磁共振图像。本实验通过将核磁共振图像数据输入到图像数据建立方法中,将图像数据建立的准确率作为方法可行性的评价指标。

根据实验结果,基于神经网络的图像数据建立方法的图像数据建立准确率为73.63%,基于稀疏编码的图像数据建立方法的图像数据建立准确率为79.88%,本发明所述方法的图像数据建立准确率为84.62%,相较于对比算法,本发明所提出的利用核磁共振的图像数据建立方法具有更高的图像数据建立准确率。

发明还提供一种利用核磁共振的图像数据建立系统。参照图2所示,为本发明一实施例提供的利用核磁共振的图像数据建立系统的内部结构示意图。

在本实施例中,所述利用核磁共振的图像数据建立系统1至少包括核磁共振图像获取装置11、图像处理器12、图像数据建立装置13,通信总线14,以及网络接口15。

其中,核磁共振图像获取装置11可以是PC(Personal Computer,个人电脑),或者是智能手机、平板电脑、便携计算机等终端设备,也可以是一种服务器等。

图像处理器12至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、磁性存储器、磁盘、光盘等。图像处理器12在一些实施例中可以是利用核磁共振的图像数据建立系统1的内部存储单元,例如该利用核磁共振的图像数据建立系统1的硬盘。图像处理器12在另一些实施例中也可以是利用核磁共振的图像数据建立系统1的外部存储设备,例如利用核磁共振的图像数据建立系统1上配备的插接式硬盘,智能存储卡(SmartMedia Card,SMC),安全数字(SecureDigital,SD)卡,闪存卡(Flash Card)等。进一步地,图像处理器12还可以既包括利用核磁共振的图像数据建立系统1的内部存储单元也包括外部存储设备。图像处理器12不仅可以用于存储安装于智能道路交通追踪管理系统1的应用软件及各类数据,还可以用于暂时地存储已经输出或者将要输出的数据。

图像数据建立装置13在一些实施例中可以是一中央处理器(CentralProcessingUnit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行图像处理器12中存储的程序代码或处理数据,例如图像数据建立程序指令等。

通信总线14用于实现这些组件之间的连接通信。

网络接口15可选的可以包括标准的有线接口、无线接口(如WI-FI接口),通常用于在该系统1与其他电子设备之间建立通信连接。

可选地,该系统1还可以包括用户接口,用户接口可以包括显示器(Display)、输入单元比如键盘(Keyboard),可选的用户接口还可以包括标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)触摸器等。其中,显示器也可以适当的称为显示屏或显示单元,用于显示在利用核磁共振的图像数据建立系统1中处理的信息以及用于显示可视化的用户界面。

图2仅示出了具有组件11-15以及利用核磁共振的图像数据建立系统1,本领域技术人员可以理解的是,图1示出的结构并不构成对利用核磁共振的图像数据建立系统1的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。

在图2所示的装置1实施例中,图像处理器12中存储有图像数据建立程序指令;图像数据建立装置13执行图像处理器12中存储的图像数据建立程序指令的步骤,与利用核磁共振的图像数据建立方法的实现方法相同,在此不作类述。

此外,本发明实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有图像数据建立程序指令,所述图像数据建立程序指令可被一个或多个处理器执行,以实现如下操作:

获取不同模态的核磁共振图像,利用基于快速傅里叶变换的图像特征提取算法提取不同模态核磁共振图像的低分辨率特征和高分辨率特征;

根据不同模态核磁共振图像的低分辨率特征和高分辨率特征,计算得到不同模态核磁共振图像的低分辨率滤波器和高分辨率滤波器;

基于多模态的高分辨率图像建立方法,利用低分辨率滤波器和高分辨率滤波器对不同模态的核磁共振图像特征进行滤波和映射处理,将不同模态的核磁共振图像合成为高分辨率图像数据;

利用结合图像域和梯度域的神经网络方法对高分辨率图像数据进行增强处理,得到增强后的高分辨率图像数据;

利用基于直方图的图像数据标准化方法对增强后的高分辨率图像数据进行标准化处理。

需要说明的是,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。并且本文中的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。

以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号